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We consider a quantum particle moving in a harmonic exterior potential and
linearly coupled to a heat bath of quantum oscillators. Caldeira and Leggett
derived the Fokker—Planck equation with friction for the Wigner distribution of
the particle in the large-temperature limit; however, their (nonrigorous) deriva-
tion was not free of criticism, especially since the limiting equation is not of
Lindblad form. In this paper we recover the correct form of their result in a
rigorous way. We also point out that the source of the diffusion is physically
restrictive under this scaling. We investigate the model at a fixed temperature
and in the large-time limit, where the origin of the diffusion is a cumulative
effect of many resonant collisions. We obtain a heat equation with a friction
term for the radial process in phase space and we prove the Einstein relation in
this case.

KEY WORDS: Fokker-Planck equation; Wigner distribution; scaling limit;
coupled harmonic oscillators.

1. INTRODUCTION

In ref. 5, Caldeira and Leggett introduced a Hamiltonian for a quantum
system of a test-particle coupled to an abstract reservoir. The Schrodinger
equation for the evolution of the quantum state can be equivalently written
as a kinetic (phase-space) equation for the associated Wigner distribution
of the test particle-reservoir system. The goal of ref. 5 was to derive (formally)
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a Fokker—Planck equation for the Wigner distribution of the test-particle
by considering various asymptotic regimes which we explain below and by
“tracing out” the reservoir coordinates. The Fokker—Planck equation
represents an irreversible collisional evolution with a diffusive term, while
the Schrodinger equation is reversible. Hence this derivation was expected
to shed some light on the origin of diffusion in the evolution of a small
system coupled to an infinite reservoir. Caldeira and Leggett used a
Feynman path integral approach which has no rigorous mathematical
justification (despite its great successes in formal computations). More
importantly, several other steps in their derivation admittedly lack mathe-
matical precision.

Starting from this observation, the aim of the present paper is twofold.
In Sections 4 and 5 we present a mathematically rigorous derivation of the
frictionless Fokker—Planck equation from the model introduced in ref. 5. In
Sections 6 and 7 we show how to recover another type of Fokker—Planck
equation from the Caldeira—Leggett Hamiltonian, using a different diffu-
sion mechanism, scalings and limiting procedures.

In both models we focus on determining the precise assumptions
which lead to the given equations. We do not attempt to describe the
variety of physical models for which the Caldeira—Leggett Hamiltonian is
used as a phenomenological description. In particular we do not investigate
to what extent the required assumptions are realistic in actual applications.
However, we keep in mind one possible physical realization of the
Caldeira—Leggett dynamics, namely the motion of an electron in a nearest
neighbor harmonic crystal (Section 2).

We point out that ref. 5 heavily relies on the use of ideas from Feynman,
Hibbs, and Vernon.®* 2% In particular Feynman and Vernon®® considered
a system of the form {test “particle” (A4) + reservoir (R)}. The Hamiltonian
is H,+ Hg+ H;, where H, is the free Hamiltonian for the test-particle,
Hpy is the free Hamiltonian for the reservoir, and H, is the interaction
Hamiltonian. They integrated out the reservoir variables, i.e., they com-
puted the time evolution of the wave function of the test-particle itself,
given by Trg{exp(ith " (H ,+ Hg+ H;))}, where Trg is the partial trace
on the Hilbert space of the reservoir and /# =/h/2n where /i is the Planck
constant. Feynman path integral formalism was used which is particularly
powerful when H is quadratic and the interaction is linear in the reservoir
variables. In this case the partial trace 7ry leads to explicit Gaussian
integrals in the reservoir variables, but in general it is not Gaussian in the
test-particle variables. However, if the total Hamiltonian is quadratic, in
particular the coupling is linear in the test-particle variables, then the full
evolution is given by a Gaussian integral, which, in principle, is explicit.
The difficulty stems from the large (infinite) number of variables.
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In this context ref. 5 introduces the following Hamiltonian,

Hep=H, +Hp+H,;

hz NQ h2 1 )
= A4,.+ Vix — 4 R;
(=it 700 )« 2 (5 a3 )

1 NQ
_ C.R, |- 1.1
+ﬁ<]§1 4 ) * (-0

The first term of (1.) represents the Hamiltonian of the test-particle with
mass M where x € R? denotes the test-particle position in dimension d. The
abstract reservoir here is a set of finitely many (say NQ, which is assumed
to be integer) independent oscillators written in normal variables R;e R¢,
having frequencies w, € [0, 2] and masses m = 1. Here © is the maximum
frequency of the oscillators and N is the number of oscillators per unit fre-
quency. The typical case is the uniform frequency distribution: w;= j/N on
[0, 2]. The coupling is linear in x and the R;’s, with coupling coefficients
given by the C;’s. The normalization factor N ="/ simply stems from the
central limit theorem, since, roughly speaking, the variables R;’s become
independent random variables with vanishing expectation in the ther-
modynamic limit N — co. The operator H acts on the Hilbert space
LAR)®(Q@ M Ly (Rd)). The authors of ref. 5 consider only d=1 for
simplicity, as we shall do as well, but the method extends to any dimension.
A detailed exposition of this model is given in Chapter 4 of ref. 16 or in
ref. 53.

Caldeira—Leggett assume that the reservoir is initially in thermal equi-
librium at inverse temperature f, ie., the initial density matrix of the
system A + R is given by,

p°=pY®exp(—fHy) (12)

where p% is the initial state of the test-particle. Finally, they choose the
coupling coefficients,

C, =, (1.3)

J J
with some 4> 0.
Remarks. (i) Instead of uniformly spaced oscillator frequencies

w;=j/N, it is sufficient to assume that the frequency distribution
on(w)dw=(1/N) Zj,l 6(w —w;) dow tends weakly, in the thermodynamic
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limit (N — o0), to a uniform distribution ¢(w) dw on [0, Q] with density,
say, ¢, i.e.,

NQ

Q Q
lim Y h(w;)= lim j h(w) QN(w)dwzcj h(w) do, Yhe C[0, Q]
N—> © N— o0 Y0 0

j=1 (L.4)

with ¢(w) being ¢ times the characteristic function of [0, 27]. Without loss
of generality ¢ =1 can be assumed because changing ¢ to 1 is equivalent to
changing 1 — \ﬁ A.

(i1) In fact, the physically relevant quantity is the spectral density of
the bath, i.e., the measure

_CHD) (o dwzlﬁ NZQ &g(w_wj) (15)

j=1 "

Jy(w) dw
W

with C;= C(w;) (see (3.23) in ref. 5, apart from constants). In the case of
ref. 5, C(w)=Aw and Jy(w)dw converges to the measure J(w)dw =
22w - 1(w < Q) dw in the limit N — oo (here 1(-) is the characteristic func-
tion). The original model can be considered for any spectral density with
arbitrary cutoff (e.g., with the standard Drude cutoff, [ 16, Section 4.2.3]),
but our analysis shows that the assumption J(w) = (const.) w is used for the
Caldeira—Leggett derivation in an essential way. However, in Section 6 we
present a model where this assumption is not needed to derive a modified
Fokker—Planck equation. For a different model in Section 7 we show that
the diffusion mechanism is robust; derivation of the Laplacian term in the
Fokker—Planck equation does not require uniform frequency distribution.
However, in that model the friction term would be time-delayed if ¢ were
not uniform.

(ii1) We consider a bath of finitely many oscillators, but we will take
the thermodynamic limit N — oo before any other limit. It is possible to
construct the time evolution of the limiting Hamiltonian directly but we
prefer to keep the presentation on the most elementary level. For the same
reason, we avoid the second quantized formalism. For the phenomena dis-
cussed here, there is no need to define a Hamiltonian with infinitely many
degrees of freedom and the corresponding Hilbert space; the N — oo limit
can be taken after the heat bath variables are integrated out as we keep all
estimates uniform in N.

(iv) We chose N to denote the number of oscillators per unit fre-
quency instead of the total number of oscillators. Since N — oo limit will be
taken first, mathematically it is equivalent to letting the total number of
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oscillators go to infinity. However, in case of the only physical model dis-
cussed here (in Section 2), this choice of N will have a physical meaning:
it will be the size of the harmonic crystal measured on the lengthscale of
the confining potential.

(v) The total potential in (1.1) may be negative, in particular H,
may be unbounded from below as N — oo. In several related models (see
ref. 16) a term

SN

2\—‘

X
2

I

\SM‘ G

is added to the Hamiltonian (1.1) to “complete the square” of the potential
in the interaction term and in the bath oscillators. With our choice of C;
this term is 22Q(x?/2). Similarly to equation (3.1) in ref. 5, here we prefer
not to add this term explicitly to the Hamiltonian, rather we will see that
the effective potential acting on the test-particle will be V g(x)= V(x)—
22Q(x*/2), where the quantity A?Q is called the frequency shift. This
approach is analogous to the procedure followed in Section 3 of ref. 5, see
especially equation (3.39). With this choice, the model becomes translation
invariant for Vez=0.
Now the main steps of ref. 5 are the following:

o First, using that H,;+ Hy is quadratic and relying on Feynman path
integrals, Caldeira and Leggett explicitly compute the evolution of the test-
particle after tracing out the reservoir variables. The evolution equation of
the test-particle involves a diffusive forcing term and a memory term (fric-
tion), the latter being non-local in time (see (3.2) below, as well as (4.14)).
These terms translate the effect of the evolution of the reservoir on the test-
particle. It is very standard in this context that integrating out the reservoir
variables gives rise to a non-Markovian evolution for the test-particle,
despite that the evolution of the full system is Markovian.

o Second, they perform the thermodynamical limit where the number
of oscillators (per unit frequency) in (1.1) becomes infinite (N — c0).

o Third, they perform the limit Q — oo, ie., the frequency range
becomes infinite (removing ultraviolet cutoff), let the inverse temperature
[ go to zero and they perform the semiclassical limit z — 0.

The limits Q - o0 and f— 0 allow them to eliminate all the non-
Markovian effects. Finally, Caldeira and Leggett state a semiclassical
Fokker—Planck equation

Ow~+0v-Vow—V Vg(x) - V,w=9V (ow) +ad,w (1.6)
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for the particle’s phase space density w=w(¢, x, v), as a result of their
asymptotic procedures. The friction coefficient y is given as y=af/M,
which is the well-known Einstein’s relation between friction, diffusivity and
inverse temperature.

As stated above, the last limit Caldeira and Leggett perform to obtain
(1.6) is the semiclassical one: #— 0. More importantly, before the semi-
classical limit they obtain the quantum Fokker—Planck equation

O W+ 0 -V W —0,[ Veg] W=V (ow") + a4, w" (1.7)

for the particle’s Wigner function w”. Here 0,[ V4] is the pseudo-differen-
tial operator (whose symbol depends on the effective potential V) describ-
ing quantum convection by Vg (see, e.g., ref. 45 for details). Speaking more
precisely, Caldeira and Leggett obtain a Markovian evolution equation for
the test-particle’s density operator whose Wigner transform w” satisfies
(1.7) (cf. e.g.,, (5.10) in ref. 5).

Note that w”=w"(x, v, ) is not pointwise positive. Its weak limit
w=1lim,,_, , w", which solves (1.6), is however pointwise positive, but does
not correspond to a quantum evolution (i.e., it is a semiclassical phase
space distribution, as said before).

The equation (1.7) is also known under the name of “Quantum
Brownian motion,” or “Quantum Langevin equation,” and received a large
interest in the context of interaction between light and matter (see, e.g.,
ref. 11).

We mention that the idea of formally deriving Fokker—Planck-like
equations from a reservoir of oscillators with linear coupling has been
exploited by many authors, e.g., refs. 6, 17, 18, 12, 34, and 52 (see also
ref. 19 for comments on this equation and the relationship with questions
of decoherence). These authors use similar scalings as ref. 5. In particular,
in refs. 17, 18, 52, and 34, corrections to (1.6), (1.7) are derived when the
temperature is large but finite, and these equations involve both a diffusive
term in velocity and friction terms in space and velocity.

Mathematically rigorous work on quantum heat baths is slightly less
abundant. The classical paper?” considers a special non nearest neighbor
interaction, so that the evolution of the oscillator chain becomes exactly
Markovian after the thermodynamic and semiclassical limits. The result is
a quantum Langevin equation and it is very close in spirit to ref. 5. This
was probably the first example of a quantum stochastic process derived
from a Hamiltonian model. More general constructions are found in ref. 41.
A laser model consisting of a chain of two level atoms coupled to a radia-
tion field is rigorously discussed by Hepp and Lieb (see the review paper?
and references therein). It is shown that the true quantum system converges
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to the classical laser equations as the number of atoms goes to infinity.
A rigorous operator-algebraic approach to quantum heat baths is given in
ref. 13, and a path-integral approach is found in ref. 9. A similar model has
also been used in the program of Jaksi¢ and Pillet to study thermal relaxa-
tion with spectral methods (see ref. 35 and references therein). Recently an
analogous system with an extra white-noise is studied in ref. 28. Under
different scalings Arai derives ballistic behaviour for the test-particle.® In
a different context and with different scaling assumptions than ref. 5 and
others, but still with the assumption of linear coupling, we also mention
ref. 11.

A general framework for weak coupling limits and on obtaining
Markovian evolution equations is discussed in a sequence of papers by
Davies. Our results in Sections 6 and 7 are analogues of the abstract
statements of refs. 14 and 15 for the Caldeira—Leggett Hamiltonians. Our
approach is however carried out in the more intuitive Wigner formalism
and the limiting Fokker—Planck equations are stated explicitly. They are
very illuminating from a kinetic (=phase space) point of view. This is
actually the main advantage of the Caldeira—Leggett approach compared
with more abstract setups. Note that the abstract results of refs. 14 and 15
do not easily translate into explicit equations in general and kinetic theory
in particular.

The key assumption in all these papers is that the test-particle is
linearly coupled to the infinite bath of harmonic oscillators, which gives
rise to Gaussian computations, and many quantities of interest become
explicitly computable. This certainly explains at least part of the interest
that these kinds of models have received.

The paper by Caldeira and Leggett raises several questions which have
to be addressed. The most serious is that the limiting equation (1.7) is not
of Lindblad form (see refs. 1, 18, and 43), which is a generic condition for
quantum systems to preserve the complete positivity of the density
operator along the evolution. Recall that the true quantum evolution
preserves this property. This shortcoming is closely related to the fact, that
the equation itself contains £ (as the ratio of y and o), while f— 0 limit
was actually used along its derivation. This is not just a mathematical
inconsistency. Either the friction term should be negligible compared to the
diffusion term in (1.7) if the f — 0 limit is really taken; or there should be
an extra term in the equation if f§ is thought of as a small but nonzero
number. In the latter case this extra term should restore the Lindblad form
of the equation, and it is not clear why this term could be considered negli-
gible compared to the friction.

The confusion probably comes from the unspecified order of limits,
which is the second important question and the paper® is admittedly
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vague about it (see comments after (3.33) in ref. 5). In fact, in several cases
ref. 5 uses “asymptotic regimes” without taking rigorous limits. The
Caldeira—Leggett system relaxes to equilibrium under very mild conditions
(see, e.g., ref. 14) without any further limits (apart from N — c0). However,
the precise equation which governs this relaxation depends on the physical
parameters of the system. In particular, only in some limiting regimes it is
true that the limiting equation is a differential equation (i.e., time-delayed
memory terms vanish). Furthermore, to obtain a Fokker—Planck type
equation, especially a Laplacian term (4,), requires further restrictions
which are implicitly assumed in various steps of the Caldeira—Leggett
derivation. We will demonstrate in particular, that the 4, term in (1.7) is
due to the special choice of the coupling constants C, ~w, (or, equiv-
alently, to J(w)~w) and to the fact that the cutoff frequency Q goes to
infinity. In physical systems finite €2 is more realistic, but then the resulting
equation contains a modified (cutoff) Laplacian, and the system will not be
described by a diffusive equation for short times. Although apparently
Caldeira—Leggett are not interested in short times (see their remark below
(3.35) in ref. 5) they do not formulate this concept rigorously. The scaling
limit, we introduce in Sections 6 and 7 will be the precise mathematical
tool for this.

Finally, from mathematical point of view, it is desirable to eliminate
the nonrigorous steps in the original derivation; especially since the order
of limits actually does influence the form of the limiting equation. In addi-
tion, the systematic use of the Feynman path integral should be avoided in
a rigorous proof, since it is a mathematically undefined object.

We should emphasize that we do not intend to give a full list of
equations arising from various regimes of the parameters; and we do not
plan to discuss which actual physical systems fall into these regimes. Our
purpose is merely to determine the precise conditions and limits which
lead exactly to a Fokker—Planck equation for the Wigner function (espe-
cially with 4, term). These conditions turn out to be quite restrictive,
which does not contradict the fact that the Caldeira—Leggett approach has
been used quite extensively and successively in models with phenomenol-
ogical friction and diffusion mechanisms. There are many different equa-
tions which behave similarly to the Fokker—Planck equation, especially if
only certain space and time regimes are considered. In fact, we also pre-
sent two limiting regimes, different from the one implicitly used in ref. 5,
which lead to modified Fokker—Planck equations and which use less
restrictive assumptions. Their diffusion mechanism does not require
uniform frequency distribution (see Remark 1 after Theorem 6.1 and
Remark 3 after Theorem 7.1). Moreover, the model in Section 7 does not
require high temperature.
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The present paper has five parts:

(a) In Section 2 we present a concrete physical model which, in
certain approximation, leads to the Caldeira—Leggett Hamiltonian (1.1).
This section is for illustration and is independent of the rest of the paper.

(b) In Section 3 we explain that the origin of the diffusive 4, term
from the original Caldeira—Leggett model is the 2 — oo limit. Then we
explain how to modify the model to obtain diffusion via a more realistic
mechanism using scaling limit. We also explain how these derivations are
related to other derivations of the Fokker—Planck equation via the
Boltzmann equation.

(c) In Section 5, we present a rigorous mathematical convergence
result for the model introduced in ref. 5. Our approach is very elementary
and physically transparent.

(d) In Section 6, we show that one can also recover a diffusive non-
kinetic behaviour (frictionless heat equation) from the Caldeira—Leggett
Hamiltonian using scaling limit and without assuming infinite frequency
range and uniform frequency distribution.

(e) In Section 7, under a different scaling limit, we derive a Fokker—
Planck equation with friction but without convective terms. The tem-
perature is finite. Einstein relation is valid in a modified form which takes
into account the ground state quantum fluctuations of the heat bath. The
diffusion mechanism is independent of the uniformity of the frequency dis-
tribution, but the friction term becomes local in time only in this case.

Our main results are Theorem 5.1, 6.1, and 7.1.

Remark. The equation derived in Section 5 is of Lindblad form (see
ref. 1). Since there is no rescaling in the variables, one can reconstruct the
quantum (restricted) density matrix from the Wigner distribution at every
time ¢ > 0, hence the equation must preserve the positivity of the correspond-
ing density matrix. The Wigner distribution itself is typically not positive. On
the other hand, the heat equations in Sections 6 and 7 are positivity pre-
serving equations in pointwise sense. After rescaling the space-velocity vari-
ables (Section 6), the weak limit of the Wigner distribution is a nonnegative
phase space density, hence the equation must preserve this property. The
time dependent quantum states (density matrices) cannot be reconstructed,
but the heat equation determines their rescaled weak limits at any time.

2. ELECTRON IN A HARMONIC IONIC LATTICE

One of the physical situations described by the Caldeira—Leggett
Hamiltonian is a single localized electron interacting with phonons. For
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simplicity, we consider only the one dimensional situation (so called Rubin
model, see [ 16, Section 4.2.4]).

The electron with mass M is subject to a confining potential ¥(x) and
its Hamiltonian is H,= —(h?/2M) A+ V(x). We consider units, where
h=M=1.

The phonons are generated by a periodic chain of ions, sitting at the
points of 4 ={(j/Q):j=0,1,2,.., NQ} = Ty where the points 0 and N are
identified. Here T, is the 1-dimensional torus of length N. Let A* =
{(j/N): j=0,1,2,..,NQ} =T, be the dual lattice. Assuming nearest
neighbor harmonic coupling, the Hamiltonian of the lattice vibrations is
exactly Hg in (1.1) written in normal variables, R;, which are the Fourier
transforms of the ion displacements (see, e.g., ref. 48). After linearization in
the phonon variables the interaction of an electron with the crystal lattice is,

H,= ) CiRexp(ik-x) (2.1)

kedA*

where C, is the kth Fourier component of the electron-photon interaction,
which comes from a two-body interaction between the electron and the
ions.

The essential point in (2.1) is that this interaction is non-linear in x. One
can reach linear coupling by assuming that the quantity k& - x in (2.1) remains
small during the full evolution of the system, and linearize the exponential
accordingly. This means that the wavelength (=O(|wavevector|~!)=
O(|k|~")) of the crystal oscillation should be bigger than the displacement
of the particle (x) during its full evolution. Furthermore, in the original
Caldeira—Leggett model (as well as in Section 5.3) the ultraviolet cutoff was
removed (2 — o0) in order to obtain diffusion (see Section 3.1). Therefore,
we are led to assume big frequencies together with big wavelengths,
whereas their product, the sound speed, is a bounded physical constant.

On the level of the Hamiltonian, notice that if C, were frequency inde-
pendent (equivalently, J(w)~w ') then 3, . 4 R,, to which the particle
coordinate is coupled (1.1), is just the displacement of the ion at the origin
as the normal modes are the Fourier transforms of the displacement vec-
tors. In other words, the test-particle is assumed to remain in the vicinity
of the origin, and it is assumed to interact with only one single ion of the
crystal lattice for all its dynamics (see, e.g., ref. 13). On the other hand, if
we wish to derive a diffusive equation for the electron, then for large values
of time it is expected to move away from the origin. Even if the diffusion
appears only in the velocity (see (1.7)), the large velocity implies large fluc-
tuation in the configuration variable as well.
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Coupling depending linearly on the frequency, C;~ w;, considered in
ref. 5, corresponds to J(w) ~ w. Theoretically, it can be obtained from a
three-dimensional phonon model with radial coupling. In this case R; is
the sum of all modes R, with the same frequency w;, where k runs through
the dual of the three-dimensional lattice 4. However, we should remark
that the Ohmic law J(w)~ w breaks down for large frequencies in real
systems.

In summary, the linear model effectively involves an implicit mean-
field assumption by requiring that the test-particle is coupled to the same
mode for all its evolution, which seems incompatible with the finite sound
speed of the metals along with the removed UV cutoff. This leaves doubts
on the applicability of the linear coupling assumption for diffusion models
for electron propagation in an ionic lattice (see also ref. 2 for a brief
criticism of this assumption). For electrons coupled to photons (Section 4
in ref. 5) this assumption is more realistic and indeed it is widely used in
electromagnetic radiation theory (dipole approximation, see ref. 11).

However, this model is more realistic if 2 — oo is not required, and
this is the case for the model discussed in Section 7. Here the electron is
subject to a confining potential V(x)=x%/2 and is performing a fast har-
monic oscillation. Moreover, it is subject to a weak coupling to the
phonons, which slowly modify the phase space support of the fast oscilla-
tion. It is this slow motion which is described by a Fokker—Planck equa-
tion with friction, after a time rescaling. The electron remains confined in
the vicinity of a single ion, hence the linear approximation is more
reasonable. Since only the modes near the resonant frequencies are used
effectively, the exact form of the spectral bath density J(w) is irrelevant for
the diffusive mechanism.

3. SOURCE OF DIFFUSION IN VARIOUS KINETIC MODELS

In order to explain the origin of diffusion (4,) in ref. 5, we have
to analyze the effects of the limits introduced there. To avoid Feynman
path integrals, we will use the characteristics in our proof (see also [16,
Section 4.2.27). Below we present the basic idea of ref. 5 in this language.

We take the Hamiltonian as in ref. 5 (see (1.1)) with M =1 and specify
the choice V(x)=1x? (harmonic oscillator), in the spirit of refs. 12, 2,
34, 52, and 11. We use the fact that, for Gaussian Hamiltonians, the
evolution equation for the Wigner transform of the density matrix is a first
order linear partial differential equation,®*4*3% which can be solved
exactly by the method of characteristics (see also ref. 52 for a similar
observation).
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In the quadratic case, we can scale / out of the equation (1.1). Let

1 , o 1e I A<
H:=—(—4,.+x )+§ Z (_AR.+CO'R')+<Z CjRJ')'x (3.1

2 x = j J T \/N =

then exp(—ith~'H,;) and exp( —itH) are unitarily equivalent under the
rescaling of variables x —»xh~"2, R,— R;h~'?2 or in other words, we
choose units where 7=1, M =1.

If V(x) is not quadratic, then it gives rise to a genuine pseudodif-
ferential operator in the Wigner equation and / cannot be scaled out. In
the semiclassical limit (%#—0) this term converges to the differential
operator V, V.z-V,w in (1.6). This fact is well-known for general semi-
classical Wigner equations.** 431:46) We will not prove Theorem 5.1 for a
general potential because our main goal is to find the origin of diffusivity
which is independent of the confining potential. We restrict ourselves to the
most convenient quadratic case.

We also present two different scaling limits starting from (3.1) which
allows one to follow the dynamics up to long times. However, we believe
that not just our result on the original Caldeira—Leggett model (in Sec-
tion 5) can be extended to include general potential, but also the resonance
effect in Sections 6 and 7. Due to the lack of explicit solutions, this requires
extra analysis which we leave to further works.

3.1. Diffusion in the Original Model

After integrating out the reservoir variables in the equations for the
characteristics, it eventually reduces to the following ODE for the particle’s
position variable X(¢) (see (4.14) for the exact result),

t
X"(1) + X(1) = f(1) + Aﬂ S(t—s) X(s) ds (3.2)
0
Here 1 is as in (1.3), S is an explicit function corresponding to the memory
effects, and the forcing term fis,
; NQ

flt)= ——= Y wj{choswjt+Pj
f

j=1

sin a)jt] (3.3)

J

where R;, P; are the initial position and _momentum variables of the
oscillators. Let R} :=./2 w,R;and P} :=./2f P; be their rescaled versions.
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In the high temperature limit these become standard Gaussian variables
since the classical Gibbs distribution is given by,

H e—ﬁ(Pf+w}Rf):1—[ o~ 12L(PFP + (RFP]

J J

and at high temperature the quantum Gibbs distribution converges to the
classical one (for the precise formulas, see (4.15)—(4.17)). Hence the choice
(1.3) for C; gives that,

/'L NQ j* Pj* .
> cos(w;t) +—=sin(w;?) (3.4)

NN Jn

and as f— 0, R*, P approach to standard Gaussians.

After integration by parts in the memory term in (3.2) we obtain (see
(4.36))

S =-

X"(t)+ X(t) = f(t) + 22QX(t) — (M % X")(t) — xM(t) (3.5)

where M is an approximate Dirac delta function M(t) ~ 2%5,(t) in the limit
Q — co. Here * stands for convolution. The term A%Q is the frequency shift
of the test-particle oscillator. The friction term M % X’ has a main
Markovian part 42X’ and a non-Markovian part which is negligible as
Q- 0.

The effect of the limits introduced in ref. 5 are as follows

o The high temperature limit (f — 0) plays two roles. First, it makes
the rescaled initial data R, P;* standard Gaussians. Second, it forces the
full friction term to be negligible compared to the forcing term.

e In the thermodynamic limit (N — o0) the sum in (3.4) becomes the
sum of the real and imaginary parts of the truncated complex white noise,

Q
AW (1) := f e a( dv)

0

where g(dw)’s are independent centered Gaussian random variables with
variance E[ g(dw)?] = dw (for precise definition see Section 4.4).

e Removing the ultraviolet cutoff (2 — oo) gives the (complex) white
noise,

awin = |  etg( ) (3.6)

0
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for the forcing term. To prevent instability (12Q > 1), we have to take the
simultaneous limit 41— 0, 2 — oo which may lead to a nonzero constant
phase shift A%Q.

Our main concern is to identify the origin of the 4, (diffusion) term,
which will come from the forcing term (see (3.4)). Hence this term should not
vanish in the limit, which indicates that f — 0 and 4 — 0 limits must be related:

L=2gf?  (Jy fixed) (3.7)

In summary, the solution X{(¢) to (3.2) converges to the solution of a
pure harmonic oscillator with a white noise forcing, i.e., 0X(t)+oX'(t) ~
(nk dW)(t), where #(s)=0sin s+ g cos s is the harmonic oscillator trajec-
tory (with initial condition #(0)=a, #'(0)=40). In particular the mean
square displacement (both in space and velocity)

Q t 2
E |0X(1) + o X'(1)]>~ E |(;7*dW<9>)(t)|2=j j n(t—s) e ds| dw
0 0

(3.8)

behaves quadratically in t for small ¢ for every finite ©Q, hence it is not
diffusive for short times.

The diffusive behavior (linear mean square displacement) is regained
only after the 2 — oo limit or after long times.

We emphasize that, from this point of view, the v-Laplacian in the CL
model immediately stems from the particular asymptotic distribution of the
frequencies (uniform from zero to infinity) in the forcing term. In other
terms this model demonstrates diffusion in a setup where a plain diffusive
forcing mechanism was essentially put in by hand. Diffusion appears
already in very short time scales as a result of high frequency oscillators.
This means that there is a shorter, unexplored time scale on which most of
the oscillators live, hence the initial Hamiltonian with the Caldeira—Leggett
limits should not be considered microscopic, rather mesoscopic. This
problem is especially transparent if the heat bath is provided by phonons
(crystal lattice vibrations) which have an physical ultraviolet cutoff (lattice
spacing). In other words, for systems with UV cutoff and without time
rescaling, 4, is not the correct diffusion operator.

In contrast to this diffusive mechanism, the source of the diffusion in
more realistic models dealing with a moving test-particle interacting with
many degrees of freedom is the scaling limit, especially time rescaling. This
means that in these models the full frequency spectrum of the diffusion is
collected over a long time from the cumulative effects of interactions with
bounded frequency, and the diffusive behaviour is visible only on a much
larger time (and sometimes space) scale than that of the microscopic
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interaction (collision) mechanism. This makes a key difference between the
present model and other works dealing, for instance, with collisional
models as scaling limits of microscopic dynamics, i.e., macroscopic long
time behaviour of Schrédinger equations (see, e.g., refs. 50, 51, 39, 33,
21-24, 46, 47, 7, 8, and 37 or also ref. 4). We remedy this drawback of the
CL scaling in Sections 6 and 7, as we indicate now.

3.2. Diffusion from Resonances in the Scaling Limit

In Section 6, we show that one can also recover a diffusive non-kinetic
behaviour from the Caldeira—Leggett Hamiltonian under a more realistic
space-time scaling limit. Namely, for a fixed cutoff in frequency 2, and
after the high-temperature limit, we consider the resulting dynamics for the
test-particle for large time 7 ~«~2 and large space and velocity variables x,
v~a~! Here « — 0 is a scaling parameter and we define X =ox, V=awv,
T=a?t to be the macroscopic (or rescaled) position, velocity and time
variables. We prove that the phase space density is subject to a heat equa-
tion both in the (rescaled) velocity and position variables. In particular, the
energy of the test-particle increases up to a =2 due to the resonances with
bath particles of high energy (but bounded frequency). Recall that the tem-
perature of the heat bath is f~' — oo, hence bath particles can have large
energy even with bounded frequency.

In this case the diffusion indeed comes from the cumulative effect of
bounded frequency interactions via a change of scale. This is in fact a high
energy diffusion in phase space; the test-particle is heated up. The forcing
frequency distribution can be quite arbitrary, the only condition is that it
has to carry energy at the resonant frequency. The diffusion comes from a
pure resonance effect, and this seems to be a more universal physical
feature in this context (see ref. 11). However, the high temperature limit is
still essential in this derivation.

In Section 7, we keep the temperature fixed and we rescale only time,
t=Té ! (where 6 — 0 plays to role of 2 above), space and velocity remain
unscaled. The reason is that the bath temperature is finite, hence the typical
energy (“temperature”) of the test-particle remains finite as well. Since the
particle Hamiltonian is confining (energy level sets are compact in phase
space), the particle remains effectively localized. As a result we get a small
scale diffusion in phase space with friction, after integrating out the fast
circular motion. Again the diffusion comes from resonance and is developed
over a long time period, and the contributing bath frequencies are bounded.

One of the important feature of these models is that the derivation is
quite insensitive to the actual form of the spectral density J(w) (1.5); the
only relevant quantity is its value at the resonant frequency.
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3.3. Comparison of the Three Models

The main goal of our investigation is to derive diffusion, i.e., 4, term
in the limiting equation. The time dependence of the mean square displace-
ment of the characteristics (3.8) is quadratic for small time (unless 2 — o0)
and is linear for large time. To see diffusion on all times considered, there
are two alternatives: either we take Q — oo or we rescale time.

(I) If € > oo, then the coupling 4 must go to zero to keep the
frequency shift A°Q finite. Up to a positive time ¢, the total effect of the
friction term is of order 2%¢, while the diffusive (forcing) term is roughly of
order A%t/p for larger times, see (5.14), however for short times it is only
quadratic in ¢. Hence for finite times A%¢ — 0, the friction term vanishes.
Moreover, the diffusive term vanishes as well, unless f — 0 is chosen such
that A%~ f3, ie., the weak coupling and high temperature limits must be
related. The frequency shift is A2Q and its actual size depends on the
simultaneous limits A — 0, Q — oo. If A — 0 is taken first, then 2 — o0, then
the frequency shift vanishes. If 12Q is kept at a positive constant along the
limits, then we see a frequency shift. These two cases are described in
Theorem 5.1, where frictionless Fokker—Planck equations are derived on
the microscopic time scale.

(I1) If we consider long times, ie., t=a 2T, « » 0 and T is fixed,
then the size of the diffusive term is roughly A%« =27T/p for all T. To com-
pensate for the blowup «~2 we can either rescale space and velocity
(x=a"'X, v=a"'V) or we set A%~ o’

(ITa) If we rescale space and velocity as well, then the friction term
has a size A*T and the diffusion term is of order A?T/f (in the new
variables). One would like to keep 4 and f fixed to see both friction and
diffusion. But since the phase shift, A2Q2, has to be kept finite, it forces
keeping Q finite as well. This is the most realistic physical situation.
However, the friction has a non-Markovian part, whose size is A>T if Q is
fixed (and it goes to zero only if 2 — oo). Hence the limiting equation must
have a term which is nonlocal in time. This is the extra term which is
missing in (1.7), but its inclusion would not lead to to Fokker—Planck, but
to an evolution equation with memory.

To derive a differential equation, the non-Markovian friction part has
to be killed. With finite Q it is possible only if 1 — 0, and then the full fric-
tion is eliminated. In order not to eliminate the diffusive term as well, f ~ A2
is necessary. This again leads to the high temperature limit, but now 2 is
fixed and the diffusion comes from long-time cumulative resonance effects.
The fast oscillator motion on the microscopic time scale has to be integrated
out; either in time or by a radial averaging. This is the model in Section 6.
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(IIb) If we set A%> ~ o« and keep f finite, then we see a finite diffusion
on a microscopic space and velocity scale. The friction term A%t remains
positive and the ratio of the friction to the diffusion is f, which gives
Einstein relation. Hence 2 could be kept fixed to see the diffusion
mechanism.

However, the non-Markovian part of the memory does not vanish
unless 2 — o0. The qualitative analysis of Section 7 shows that Q can grow
very slowly (like |log «|7), ie., the non-Markovian part of the friction is
weak for large times and moderately large Q. This was probably the
heuristic idea of Caldeira and Leggett to neglect this term. However, this
effect shows up only after time rescaling; for finite microscopic times ¢ this
term is not negligible.

Hence we let 2 — co, and assume that A>Q converges to a fixed num-
ber (possibly zero). This number gives the frequency shift. Again, we see
that the size of the frequency shift delicately depends on the simultaneous
limiting procedure. This is the model of Section 7 (where 6 :=«? is intro-
duced for brevity).

We point out that in models ITa and IIb the origin of the diffusion is
the time rescaling. Since the forcing frequencies are kept finite, there is no
diffusion on the microscopic scale; it becomes visible only after the large
time rescaling. Hence the physically questionnable limits, f— 0, 2 — o
have nothing to do with the emergence of the diffusion in these models.

However, at least one of these limits is necessary to arrive at a dif-
ferential equation instead of an integro-differential equation with time
delayed memory term. In model I1a (Section 6) we used f — 0 and kept Q2
fixed, while in IIb (Section 7) we let 2 — oo and kept f finite.

We always consider nonnegative times 7>0. However, most of our
computations are valid for anmy time, except those which are directly
responsible for the emergence of the diffusion (Laplacian, or linear mean
square displacement). We shall point out these steps. If time were evolved
backward, ¢ <0, then the same argument would yield an opposite sign of
the Laplacian (so that along the evolution it is regularizing) in the final
limiting equations. This is the usual phenomenon of irreversibility of the
parabolic equations.

3.4. Derivation of Fokker-Planck Equation via
Boltzmann Equation

In the Caldeira—Leggett type models we assumed that the test-particle
is localized and is subject to a harmonic heat bath with linear interaction.
This usually describes particles trapped in a cavity.
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For transport phenomena it is more natural to consider a free test-par-
ticle subject to a collision mechanism. In these models the collisions are
provided by impurities (Lorenz gas) or by a system of many noninteracting
particles (Rayleigh gas or phonon models) and one focuses only on the
dynamics of the test-particle. The goal is to derive an equation for the
reduced phase space distribution from the Hamiltonian dynamics with
many degrees of freedom. A scaling limit is necessary to eliminate the
details of the single collisions and to keep only their cumulative long-time
effects. The effect of a single collision is weakened. One can introduce a
weak coupling parameter 4 — 0; one can consider a gas at low density
0 — 0 or, in the Rayleigh gas case, one can let the mass ratio of the gas par-
ticle and test-particle m/M go to zero. In all cases the time is rescaled as
t=To~". The first scale on which collision effects are visible is § ~ A% (weak
coupling or van-Hove limit) or d~¢ (low density or Grad limit) and
0 ~m/M (heavy test-particle limit).

In classical mechanics, the limiting equation is the linear Landau
equation (or diffusion on the energy surface) for the van-Hove limit;®*® the
linear Boltzmann equation for the low density case;* % and the Fokker—
Planck equation for the heavy test-particle case.?® The Fokker—Planck
equation can be obtained in a two step limit as well: first one obtains a
linear Boltzmann equation via a low density limit, then a Fokker—Planck
equation from a mass rescaling (for an excellent review, see ref. 50).

In quantum mechanics the limiting equation is the linear Boltzmann
equation both in the case of the Lorenz gas (see ref. 21 for the low density
case and ref. 22 for the weak coupling case) and in the case of the weakly
coupled phonons.®® In the model of ref. 23 a more realistic nonlinear
phonon coupling is considered.

In all cases when the first nontrivial limiting equation is Boltzmann,
one needs an extra limiting procedure to derive a diffusive equation. For
example if the momentum change in the collisions is small (e.g., the mass
ratio m/M is small), then a Taylor expansion in the Boltzmann collision
operator gives the Fokker—Planck equation in the first nontrivial order (see
ref. 42, for rigorous proof*®). The smallness of the collisions has to be
compensated by an extra time rescaling. However, the two step time
rescaling cannot be considered as a fully satisfactory derivation since in the
first (Boltzmann) limit correlations are neglected which could become rele-
vant on a longer time scale. The proper (but much harder) procedure is to
follow the Hamiltonian dynamics up to the desired (larger) time scale.

We remark that a considerably more difficult collision mechanism is
when all particles interact, they are identical, and we are interested in the
evolution of the one particle marginal distribution (or density matrix). In
this case, the limiting equation is expected to be a nonlinear Boltzmann
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equation and in classical mechanics it was proven by Lanford.“? In quan-
tum mechanics the correlation structure is complicated and even the first
nontrivial (Boltzmann) time scale is not understood rigorously.

Finally, we compare our model IIb to these free kinetic models with
collisions. The closest related model is a free electron subject to a weakly
coupled phonon interaction considered in ref. 23, where a (linear)
Boltzmann equation was derived. In both models the time scale is the van
Hove scale t ~ 272, where A is the coupling constant. In case of the realistic
(nonlinear) electron-phonon coupling in ref. 23, each phonon mode con-
tributes equally to the collision mechanism. In the model IIb the source of
the diffusion is resonance which originates merely in the test-particle con-
finement, however for the rigorous proof we need to use the special form
of the linear coupling and test-particle Hamiltonian. Phonons with frequen-
cies away from the base frequency of the test-particle Hamiltonian do not
contribute, while phonons near the resonance frequency have a strong long
time effect. In particular, it is easy to see that the Duhamel expansion used
in ref. 23 diverges for the model IIb, which is also an indication that there
is no Boltzmann equation behind the Fokker—Planck equation derived in
Section 7.

4. PRELIMINARY RESULTS

4.1. The Wigner Formalism

The density matrix,
prei=pNe(t, x, y, R, Q) (4.1)

which is the solution of
i0,p" ¢ =[H, p™*] (4.2)
represents the state of the system “particle + reservoir” at time ¢ with the
reservoir variables R=(R;,..., Ryo), O=(0,..., Ono). We index the den-
sity matrix by N and the superscript ¢ =(f, €2, 1) stands for all the other
scaling parameters; recall that f§ is the inverse temperature, 2 is the fre-

quency range and A is the coupling strength in the Hamiltonian (3.1).
We take the initial data,

Y@ e (43)
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with p% := p%(r=0) independent of &. Here Hp := 532, (— g + w0 R})
is the reservoir Hamiltonian and p%(¢, x, y) is the density matrix at time
t of the test-particle. It is defined by

Pyt X, ) =] pYe(sx, v, R R) dR (44)

RN

with the obvious notation dR=dR,---dRyg. As usual, we do not dis-
tinguish between operators and their kernels in the notation. Following
ref. 5, we have to compute,

Tr ale ™" (p', @ e #1x) ) (45)

where Try is the partial trace over the reservoir variables. We observe that
the Hamiltonian (3.1) is quadratic, so that equation (4.2) can actually be
transformed into a first order transport partial differential equation by
using the Wigner transform. Indeed, let us define the Wigner transform
w™#(¢) of p™ (1) by

w™e(t, x, v, R, P)

'_IRNM'” <”x+2’x y RE5-R 2>

NQ

X exp <—i { yo+ ) QkPk} > dy dQ (4.6)

k=1

Also, let us define the Wigner transform of py¢ by

wié(t, x, v) :=f phe <z, X +X, X _y> exp(—iyv) dy (4.7)
R 2 2
We have the well-known property,
w1, x, v) ::J w™e(t, x, v, R, P) dR dP (4.8)
R2NQ

and the initial datum for w?-¢ is easily computed from (4.3) and the Mehler
kernel,

whé(1=0,x,v, R, P) =wy(x, v) WY (R, P) (4.9)
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with

veor pree 11 |4 (COSD(S0R) — 1NV
WEAR P):=T] {4” <cosh<ﬁwk)+1>

k=1

wr(cosh( farg) — 1)
X exp <_{ sinh( fore) Ri} >

sinh( fwy)
S <‘ {wkmosh(ﬁwk) 1’ }ﬂ

Here, wy(x, v) is the initial datum for the test-particle, i.e., it is the Wigner
transform of p%(x, y). Here and in the sequel, we shall assume the following
regularity for wy,

wo(f,n):f wolx, v) exp(—i[x¢ + vy ]) dy doe LR, x R,)  (4.10)

It is well known that, if p™© satisfies the Von-Neumann equation (4.2)
with Hamiltonian given by (3.1), then its Wigner transform (4.6) satisfies
the following partial differential equation,

NQ
oW+ 00 wNF—x O, w4 Y (P Og W — R Ry Op, W)
k=1

)L NQ /L NQ
( Y kak>8,,wN’E—< Y wkxﬁpkwN’s>=0 (4.11)
k=1

VA= VN

As a conclusion we can now rephrase our original problem in the
Wigner formalism: following ref. 5, we want to derive a diffusive behaviour
for wi¥é(z), the trace of w™ “(¢), in the thermodynamic limit (N — c0) and
in certain limiting regimes of &. Here, w™-¢ satisfies (4.11) with initial datum
(4.9).

4.2. Solution by Characteristics

Equation (4.11) can easily be solved by the method of characteristics.
In fact, for all values of time ¢, and for all smooth, compactly supported
test functions ¢(x, v), we have,
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IRZ w5(1, x, v) ¢(x, v) dx do
- JRZNQ” w(t =0, x, v, R, P) $(X(1), V(1)) dx dv dR dP
— fRszs WolE, 1) mei()c@rmy)

x e TIXW OV W N.o(R P dx dy dR dP dé dy dO do (4.12)

where we have introduced the (forward) characteristics,

; NQ

@ Ry (1)

f" ! (4.13)

A
Ri(1) =P (1),  P1)= _wlchk(l)_ﬁ

with initial data X(0)=x, V(0)=v, Ri(0)=R; and P,(0)= P,. Here we
used that the flow (4.13) preserves the Lebesgue measure over R*?Ve+1)
For simplicity, we did not index the characteristics by N, &, but X(¢), V(¢)
in (4.12) depend on N, &. However, sometimes we will use X (¢) for special
emphasis.

Integrating with respect to R,(¢) in (4.13) and inserting the result in
the equation for X(z) gives,

W X(t)

NQ

i t
X' ()+X1)=——=Y w, {Rk COS Wyt + Py 2k
k=1 Wi
}»2 NQ ¢
+5 % [ o sinoi—s) X(s) ds (4.14)
Nk:l 0

The right-hand-side of (4.14) is of the form “forcing term + memory term”
(see also [ 16, Section 4.2.21]).

In view of (4.9) and (4.12), the partial trace over the oscillators is an
integral with respect to a Gaussian distribution in R,, P, with (unnor-
malized) density,

w;(cosh fw,—1) sinh fw, 5
eP sinh fo, Rk o (cosh fa 1+ 1) ¢ (4.15)
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Changing variables such that,

_\/Zwk(coshﬁwk—l)R _\/ 2sinh faw,
"= sinh fo, o Pe= o (cosh faog + 1)

P, (4.16)

we obtain (after normalization) the standard Gauss measure,

NQ
1
dun= 1] ﬂe_l/z(’i‘Lpi) dry dp, (4.17)

k=1

ie., ri, pr are independent standard Gaussian variables. The integration
with respect to this probability measure will be denoted by E,.

Using these new variables and integration by parts with respect to s,
the equation (4.14) for X (t) = X(¢) becomes,

X3(0) + Xn(1) = fin(0) + 22QX (1) — (My X X'y)(1) —xM (1) (4.18)

with
/1 NQ
fu(t) = —\—ﬁv Y Ag(@)[ 1 cos wyt+ py sin wyt] (4.19)
k=1
and
/"LZ NQ
My(t) :=— COS Wyt (4.20)
N k=1

Here we defined,

h 1
Alw)=Ayw) := wf$m§;j) (4.21)

We see that the memory term is split into three parts. The term A2QX y
induces a frequency shift of the test-particle oscillator, M, * X'y is the fric-
tion term and the last inhomogeneous term will be irrelevant. We define

a?=a’:=1-1Q

(recall that ¢ stands for the triple (f5, 2, 1)), and we always assume that a,
is uniformly separated from zero, i.e., ¢, <a, <1 with some constant ¢, > 0.
We can rewrite (4.18) as

X3 (1) +a?X (1) = f(t) = (My % X'y)(1) — XM (1) (4.22)
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4.3. The Thermodynamic Limit

We now perform the limit N — co. A possible way is to solve (4.14)
(iteratively), and compute the limit in the corresponding formulae (see
(4.42) later). This rigorously gives the thermodynamic limit but we present
an alternative approach which is more illuminating to explain the
asymptotic diffusion that we shall recover in Section 5.3. We first need an
a priori bound.

Lemma 4.1. Let X(¢) solve (4.22) with initial conditions X(0) = x,
X'(0)=v, and let

Fy(t) :=sup Ey [Xn(2)| +sup Ey [ Xy (7)] (4.23)

sS<t s<t
Then there is a constant C > 0 such that

Fp(1) < Ce®(|x| + |v] + K |x| +sup {se " ®}[12Q(B~'+Q)]'?)  (4.24)

s<t

uniformly in N, where

o 1
K=K(), Q) := cz2<1+|9_a|> (4.25)

and a®>=1-12Q¢€(0,1].
Proof. From the fundamental solution of (4.22), one has
Xy(t) =x cos at +va~"' sin at
t
+ [ sina(r—$)Lfils) — (M * X)(5) — XM y(s)] ds
0
(4.26)
X'y(t)= —Xxa sin at + v cos at
t
+ JO cosa(t—s)[ fals)—(Muyx Xy)(s)—xMy(s)] ds

First step. To estimate the memory term in (4.26), we write,

j' sin[a(t —s)](My % X'y)(s) ds
— (sin(a-) % M, % X)(1)

- jt <f sin[a(s —u)] M (1) du> X\(t—s)ds  (427)
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An easy calculation shows that the inner integral is bounded by

) sin[a(s —u)] My(u) du| = |(My % sin(a-))(s)| <kA? <1 + ! >
0 |CI—Q|

(4.28)
with a universal constant k uniformly in N. Indeed, notice that,
Q
lim M(s) =22 52 ) (4.29)
N—> © S

uniformly for se€[0,7]. Moreover ff) sin[a(s—u)] M(u)du can be
estimated by splitting the integration into two regimes u<1 and u>1 (or
u < s regime only if s < 1) and both regimes can be estimated by elementary
integration by parts to obtain (4.28).

Hence the expected value of the integral of the memory terms in (4.26)
is estimated by,

Ey

f’ a1 sin a(t — s)[ —(My % X'\)(s) — xM y(s)] ds
0

s 1 t
<a 1/M2<1 +|a_Q|> [|x| +L Fals) ds] (4.30)

and similarly for the cosine term in (4.26).

Second step. For the forcing term one computes,

Ey jt sin[a(t—s)] fy(s)ds| <tsup (Ey|fy(s)|*)"? (4.31)
0 s<t
We have,
12 NQ
Ex | fa(s) Z A <k)2!2(ﬂ + Q) (4.32)

where £ is again some positive constant, independent of N. Indeed, this
sum is an approximating Riemann sum for the integral,

o [ 2 w(cosh fw +1)
2 Aw)do=1*| —————d
& L ) do L) 2 sinh fw @
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which satisfies the estimate (4.32). Hence we obtain,

EN[|XN(t)|+|X’N(t)|]<|x|+|v|+k)v2<1+ : >{|x|+rFN(s)ds}
|a—.Q| 0
+1[k22Q(B + Q)] (4.33)

By a standard Gronwall-type argument we conclude (4.24). ||

4.4. Digression on Stochastic Integrals

Stochastic integration is integration with respect to a random measure.
Once the measure is specified, the integrals are defined as limits of integrals
of stepfunctions. We do not develop this notion here, just indicate how it
is related to the present problem.

Definition 4.1. The ensemble of random variables g(A4), A running
over the Borel sets of R, is called standard Gaussian random measure if g(A)
is a centered real Gaussian random variable for all 4 and Eg(4) g(B) =
|A N B| where |-| is the Lebesgue measure.

In the thermodynamic limit N — oo, the forcing term (4.19) converges
in an L?(du,) sense towards the stochastic integral,

- —Aj w)[1(dw) cos wt + p(do) sin wt] (4.34)

where r(dw), p(dw) are independent standard Gaussian random measures.
The expectation with respect to their joint measure is denoted by E. Clearly
fny(t) is a Riemann sum approximation of f(¢) by choosing r,:=
NY2r([(k—1)/N,k/N]) and p, := N'"?p([ (k—1)/N, k/N1]), since their dis-
tribution is du (see (4.17)). In particular we can realize all f,’s and f on
a common probability space. Note that f(7) is formally a white noise (see
(3.6)) when the “hyperbolic factor” A4 4(w) is replaced by one and Q = .

Lemma 4.2. For 1<Q < oo there exist a random function X(7)
such that,

lim (supE |Xy(s)— X(s)|+sup E | X'y(s)—X'(s)])=0  (4.35)

N—oo s<t s<t
and X(¢) almost surely satisfies the equation,

X"(t) +a*X(1) = f(1) — (M % X')(t) — xM(1) (4.36)
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with initial conditions X(0) = x, X’(0) =v. Moreover,

F(t):=supE | X(s)| +sup E | X'(s)]

sS<t s<t
satisfies the same estimate as F(¢) (see (4.24)),

F(1) < CeX(|x] + |v] + K |x| + sup {se ®}[22Q(B~+ Q)] (4.37)

s<t
Proof. Let us define X{(¢) by the integral equation,

X(t) = x cos at + va~" sin at

+f a='sin[a(t—s)][ f(s)— (M % X')(s)—xM(s)]ds  (4.38)
0

Since,

2 w(cosh o+ 1)

! 2 __ 12
LE|f(s)| ds =1 fo rnh o %<

X(¢) is well defined almost surely and satisfies (4.36). Moreover, the unifor-
mity of (4.24) in N, and (4.35) shows that F(¢) satisfies (4.37). So we are
left with proving (4.35).

Let Zy(s) := Xn(s) — X(s), then it satisfies (from (4.26) and (4.38)),

Zy(1)= [ a~ sinLale = 9)1Lfu(s) = £(5) = (M * Z)s)

—(My—M)* Xy(s) —x(My—M)(s)] ds

and a similar formula holds Z'%(z). Clearly Z,(0)=Z%(0)=0. Hence,
similarly to (4.33),

E(|Zyn(s)] +1Zx(s)])

SKKFN(S) ds+a~'tsup ({|x| +tsup E | X'y(u)|} |Mn(s)— M(s)]

+E [ fn(s) = 1(s)])

with  Fuy(t)=sup,., E |Zy(s)| +sup,<, E |Zy(s)]. We use again a
Gronwall argument to obtain (4.35), based upon the control of
sup, <. E | X'y(u)| from Lemma 4.1 and the facts that |M y(s) — M(s)| — 0
(see (4.29)) and E | fx(s) — f(s)| = 0 uniformly for s <t as N — oo.
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In order to check E |fy(s)— f(s)| — 0, we observe that,

e (S ] 2 o o] 5 4]

to obtain,

B0 o= [ [ o) = X a1 (0e] SLED] do

(4.39)

which goes to zero as N — oo, uniformly in s<¢ For uniformly spaced
frequencies, w, =k/N, (4.39) is straightforward. For frequencies satisfying
only the uniform density condition (1.4) with ¢ =1, first one has to verify
that

1 k
lim — Nog——|=nt=
N‘fioN#{k ‘a’" N‘ '7} 0

for any #>0, and then using the continuity of the function A4(w) to
conclude the result. |

Let us remark that for the present paper there is no need to use
stochastic integrals. A reader who is unfamiliar with this concept, can keep
the finite sums > 32, instead of [ dw, fy(¢) instead of f(¢), and keep on
thinking of E as expectation E, with respect to the finite dimensional
measure du,. We shall compute various expectations involving f(z). The
results are given as an ordinary jf (--+)dow integral. However, one can
keep the finite dimensional approximations f/(#), and perform the expecta-
tions with respect to du,. In this case the expectations involve a finite sum
over the frequencies, like 32, (---). It is sufficient to take the N — oo
limit only in this sum, which is a Riemann sum for the integral |§ (---) dow
using (1.4) with ¢=1. However, for notational simplicity we will use the
continuous formalism. Note that the thermodynamic limit N — oo is always
taken before any other limits.

The conclusion of Section 4 is the

Lemma 4.3. Assume (1.4) with ¢ =1 and assume (4.10). Let w'y%(¢)
be defined as (4.8), while w? (¢) is the solution of (4.11) with initial datum
(4.9). Then, in the thermodynamic limit, we have for all ¢(x, v) e CP(R?)
locally uniformly for e R,

lim J wh2(t, x, v) §(x, v) dx dv =[ we, (1, x, v) ¢(x, v) dx dv (4.40)
R2 R2

N— ©
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where w? is defined by
j we, (1, x, v) ¢(x, v) dx dv
R2

—E j (& 1) B0, g) M TIKD XD G iy i do dO do
R
(4.41)

and X satisfies (4.36).

For the proof one only has to observe that the dominated convergence
theorem applies and use Lemma 4.2 and (4.12) (recalling that X is actually
Xy in that formula). |

Remark. As an alternative proof which avoids any reference to
probabilistic concepts, we can easily compute the right-hand side of (4.12)
directly by performing a finite dimensional Gaussian integration with
respect to du, (again, X(¢) is actually Xp(z) in (4.12)). In this case all the
integrals [§? (---) dw are finite sums and the N — co limit is taken only
after having performed the du, integration. We easily find that the right-
hand side of (4.12) is equal to,

j ol A(1) 0+ A'(1) 0, B(1) 0+ B(1) 0) §(0, 0)

deo | dO do
(4.42)

2 [A,(1) 0+ A4,(t) 0]? @ [B,(1) 0+ B,(t) ]
X eXp { —L 7 da)—jo 2

where A, =/[2w(cosh(fw)—1)]/[sinh(fw)], u,=1[2 sinh(fw)]/[w(cosh
(fw)+1)], and,

W) = 32 f: fot o sin(w[ 1 —s7) sin(s) ds do

A(t)=cos(t)+ (¥ & A)(1)
B(t)=sin(t) + (¥ % B)(?)

Ay (t)= Aw cos(ws) sin(t—s) ds+ (¥ % A,)(t)

A sin(ws) sin(t —s) ds + (¥ * B,)(t)

-l
-],
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5. THE FOKKER-PLANCK EQUATION FROM THE ORIGINAL
CALDEIRA-LEGGETT MODEL

5.1. Evolution Without Friction

In the spirit of ref. 5, we would like to exhibit a scaling where the solu-
tion of (4.36) is close to the solution X(¢) of the equation without friction
term below. The scaling parameters are ¢ = (f, 2, A). The frictionless equa-
tion (compare with (4.36)) is,

X"(0)+a?X(t)=f(r)  with X(0)=x, X'(0)=v (5.1)

recalling that a®>=a,>=1—-1’Q¢e (0, 1]. _
We need a continuity result ensuring that X(z) and X(¢) are close. If
Y(¢) = X(t) — X(2), then,

Y'(t) +a’Y(t)= —(M % X')(t) —xM(?) (5.2)

with initial conditions Y(0)= Y'(0)=0. Given the bound (4.37) on X{(¢)
and (4.28) it is trivial to see that,

E(|Y())[+1Y'(2)])
< Kte®(|x| + |v] + K |x| +sup {se ®}I[12Q(B~ +2)]'?) (5.3)

s<t

where K= CA%(1 +(1/|2 —a|)) (see (4.25)). So in particular the solution of
(4.36) tends to the solution of (5.1) in a very strong norm if the right-hand
side of (5.3) goes to zero. This happens for example for such limiting
regimes of ¢=(f, 2, 1) that 1 —0 and Q — oo in such a way that ¢*=
1—-2%Q€(0,1] and A28~* 0.

Hence, as soon as one can ensure a small right-hand side in (5.3), we
can replace X by X in (4.40)—(4.41) by the Lebesgue theorem, since the
x, v, 0, o integrations range over a bounded domain (¢ is compactly sup-
ported) and we assumed Wo(&, ) e L! (see (4.10)). This proves

Lemma 5.1. Let % be defined as,

we(t, x, v) d(x, v) dx dv
R2

=E jm Wo(&, 1) $(0, a) 15+ me —iEXD O+ X W) g iy dx dv db) do
(5.4)
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analogously to (4.41). Then,

limf W (1, x, v) ¢(x, v) dx dv =lim J wé (2, x, v) ¢(x, v) dx dv (5.5)
& R2

& R2

for any limit of the parameters ¢ =(f, Q, 1) for which the right-hand side
of (5.3) goes to zero. |

5.2. Computing the Dynamics of the Test-Particle
When the Memory Vanishes

In this section we compute w%(z, x, v) when X is actually replaced by X,
the solution of (5.1), in (4.41). We have,

t
X(t)=x cos at +va~"' sin at—i—f a~'sina(t—s) f(s)ds
0
(5.6)

X'(t)= — xa sin at + v cos at—i—j cos[a(t—s)] f(s)ds
0
Hence

J wé (1, x, v) ¢(x, v) dx dv
R2

~

=E jw Wo(&, 1) §(0, a) e+ me =i X0 0+ X1 gz gy dx dv df) do

=E [ (&, ol0), 10,0(1)) $(0, @) e 1RO SO E dg iy (5.7)
R

with
N9, o(1) :=0a~"sin at + o cos at, Epo(t)i=0cosat—coasinar  (5.8)

which are, by the way, harmonic oscillator trajectories,

d d
E”ﬁ,o‘(t)zéﬁ,a(t)a %éﬁ,o—(t)z _azﬂe,a(t) (5.9)
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After performing the expectation in (5.7), we arrive at

Lemma 5.2. With the notations above, we have for any 7 >0,

Wo( &, o(1)s 10, 5(1)) $(0, 7) e =220 dp do
2

{ Wt X, 0) ¢, v) dx dz;:j
R (5.10)

R
with

0(t) 1= O(t; 0, 3 B, a) = 22 jg A(w) H(t, o) do (5.11)

0

2

H(t,w):=H(t,w; 0, 0;a)= (5.12)

t
[ 10,0t5) e ds
0

The functions &, ,, 74, , are defined by (5.8). The function H(t, w) satisfies
the following estimate
2 4
+ } (5.13)

(a+w)?

eit(afw) _ 1

H(t, w)<2y2{
a—w

with y? := 0% + a%¢?. Assuming Q> 1 we also have

,cosh fa+1

_ 2
QO =107 inh fa

+22%B(1) (5.14)

with 7:=n/2 and with a function B satisfying B(0) =0 and
|B(t)| < C[1+B7"1[1+(log), 1[1 +log 2] (5.15)
with a universal constant C. Also, we have the estimate:

O(t) =E(f *15 ,)? (1) =E(0X(2) + o X'(£))2 + O[(Ix| + [v])(10] + |a])]
(5.16)

Remark 1. Notice that Q(¢) grows quadratically in ¢ for small ¢
(since H does so). This means that the test-particle as described by the
Wigner distribution w¢ has a ballistic behaviour when the memory effects
disappear (quadratic growth of the mean squared displacement EX?(7)). In
the rest of this paper we show that, under several specific scaling limits, one
can indeed replace w? with Ww?% (see Lemma 5.1) and recover a linear
growth for Q(t), ie., a diffusive behaviour for the test-particle. In par-
ticular, this is where the time asymmetric condition z >0 is used.
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Remark 2. Suppose that the frequency distribution g(w) (see (1.4))
is not uniform (hence J(w) is not linear). By the same calculation, we still
obtain (5.10) except that Q(z) is given by A*|§ 43(w) H(1, ) o(w) dw.
Assuming that g(w) is bounded and it is differentiable around the resonant
frequency w = a, we obtain the analogue of (5.14),

cosh fla+1

_ 2.2
Q) =127tr70(a) 2a sinh fla

+ A%2B(1)

and the estimates (5.13), (5.15) remain valid. The proof is identical. This
remark will be used in Sections 6 and 7.

Proof. We only have to show the estimates (5.13) and (5.15). These
are straightforward calculations. We use the following notation,

ac + i = ye™ (5.17)

(ie., 0=7ysin ¢, ac =y cos ¢ and y* = 0 + ac?). Hence, from (5.8),

y i(¢p—a —i(¢p—a
ng,a(t)=z(e(¢ Do) (5.18)
and
2 —it(a+ w) itla—w) 2
P g€ —1 e —1
H(t == — 5.19
(1, @) 42 |° a+w a—w (5.19)

which proves (5.13).
To prove (5.14)—(5.15), for any Q>1 we obtain, by extracting the
worst singularity

2 w(cosh fw+1)
_ 2
o(t)y=4 fo 2 sinh f H(t, ) dw
2 2 2 (cosh fwr + 1) |~ — 112
2 B+ T2 do (520
4q? (1) + 44 L 2 sinh fw a—w w )

with

e—it(a+w) _ 1 2

2 w(cosh fr+1)
(t)'_jo 2 sinh fo {

) —itla+w) __ 1 itla—w) __ 1
—2Re <e2’¢ ¢ ¢ >} deo (5.21)
a+w a—aw

a—+w
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and B(0)=0. With the substitution &’ = #(a —w) in (5.21), one easily com-
putes

|B(1)| < C[1+B7"][1+ (log 1), ][ 1 +1log Q] (5.22)

The second integral in (5.20) is proportional to ¢ for large ¢ since
Q>1. Obviously it becomes uniformly bounded if Q<a<1 (a trivial
behaviour), and this is the very reason why we assumed £ > 1 in this sec-
tion. Then the main contribution comes from w~a, and by the same
change of variables as above, the result is,

,coshaf+1

12,2 2
O =27 B(1) + 127 5 s

(5.23)

with 7:=7/2, and B(t) is replaced by some B(¢) which also satisfies (5.22)
and B(0)=0. |

5.3. The Fokker-Planck Equation in the Caldeira-Leggett
Limits
In this section we rigorously perform the scaling limit introduced in

ref. 5. We prove the following,

Theorem 5.1. Let w? be the Wigner distribution of the test-par-
ticle after the thermodynamic limit, as given by Lemma 4.3. We recall that
e stands for (B, Q, 2). Let 4= A,f"2, 4, fixed.

(a) [ Nonzero frequency shift] Assume that a’>=1—2A’Q=1—/28Q
€(0, 1] is fixed. Then for any ¢ >0 the following weak limit exists

Wi(t, x,v)= lim w(t, x, v) (5.24)
The limit holds in the topology of C%([0, w),; Z. ). Moreover, W satisfies
the Fokker—Planck equation,

i

O, W4+ v0, W—a*x0,W— 5 A,W=0 (5.25)

with initial datum W(t=0)=w, satistying (4.10).
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(b) [No frequency shift] For any >0 the following weak limit
exists,
W(t, x,v)= lim lim w%(¢, x, v) (5.26)
Q-0 -0

[ the order of limits cannot be interchanged ], and W satisfies the Fokker—
Planck equation,

2

A
8, W+ 00, W—xd, —%”ADW=0 (5.27)

with initial datum W(t=0)=w, satisfying (4.10).

Proof. For the proof of part (a) first notice that Lemma 5.1 applies
since the right-hand side of (5.3) goes to zero under the prescribed limits.
Hence X can be replaced by X and we can therefore rely on Lemma 5.2
above. On the other hand, since we assumed A = 1,82, we readily observe,

Q 2
lim* Q(1) = /2 nm*f BA%(w) H(1, @) do = Azj f 02 (s) e~ ds| dw
0

(5.28)

where lim* stands for the simultaneous limit f—0, Q2 — oo such that
a®>=1—73pR2e(0,1] is fixed. Here we used that 4 4(w)>— 1 in our limit
if 0 < QY% and that H(t, w) e LY(dw), see (5.13). The contribution o > Q12
to the integral vanishes in the limit by the estimate (5.13) and the trivial
bound (zcoshz+1)/sinhz<2(1+z). Hence from the unitarity of the
Fourier transform

Lw

which is valid for any real function g, we obtain

2

t
j g(s) e ™5 ds
0

dw:nfot | 2(s)|2 ds (5.29)

lim* Q(1) = A27 jt 73 () ds (5.30)
0

Here >0 is used, and this step is the origin of irreversibility. The end of
the calculation is trivial. From Lemma 5.2 together with (5.30) we have,

lim* f we (¢, x, v) §(x, v) dx dv

R2

= [ 0(Coalt), 10,4(1) 0, 0) eI E A dg (531)
R2



578 Castella et al.

where # and & are defined in (5.8) and /=7x/2. We can define,
W(t, x, v) :=lim* wé(t, x, v) (5.32)

as a weak limit given by (5.31). Then differentiating (5.31) gives (using (5.8)),

f a,Wl(t, x, v) ¢(x, v) dx dv
RZ

~

:j 0,1,0,0) (0, o) dO do
R

= | D=a0,00) 2c+ &0, 0(0) 0, — Liin} (1))

X Wo(Eg, (1), 10, o(1)) §(0, 0) e ™R 567084 G dg (5.33)
Letting 1 =0, we have,
O,lio WI(t,0,0)=[ —aa0y+ 00, — 1)2a®] W(t,0,0)|,_o (5.34)

which is exactly the Fokker—Planck equation (5.27) after Fourier trans-
forming,

Oili_o WI(t, x,v) =[a*x0,—v0, + IA34,] W(t, x,v)|,_o (5.35)

Considering =0 is not a restriction, since the proof works for any L'
initial condition.

The proof of part (b) is completely analogous. We again notice that
under the prescribed limits the right-hand side of (5.3) goes to zero, hence
Lemma 5.1 applies. Here #, , and &, , depend on the limiting parameters,
since a>=1—2°Q=1—/3fQ. But limy_,,a =1, hence

lim 74 ,(s) =0sin s+ o cos s, lim &y (s)=0coss—osins (5.36)
B—0 p—0

uniformly for se€ [0, ¢]. Therefore

2

Q t
lim lim Q(r)=42 lim j [0sins+0coss] e ds| do

Q-0 -0 Q- o JO 0

2

[e'e] t
=13 j “ [Osins+ocoss]e ™ ds| dw
0 0

t
=ni2 fo [0 sin s+ o cos s]* ds (5.37)
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Again, the last step is robust in a sense that it does not use the particular
form of the function [0 sin s + ¢ cos s], instead it uses (5.29). But it is rigid
in a sense that Q = oo is essential to get diffusive (linear) behaviour for the
mean square displacement (5.16).

To conclude, we follow the calculation (5.31)—(5.35). In addition to
the limit (5.37), we have to replace &, ,(5), 74, ,(s) by their limiting values
(5.36) in the argument of W, to arrive at the analogue of (5.31). Dominated
convergence theorem applies if we assume, additionally, that W, is con-
tinuous and bounded. However 1, L', hence it can be approximated by
such functions in L'-norm. Using that the flow (0, ) = (& ,(s), 175, 4(5)) is
measure preserving and that $ is bounded, one can easily see that the
approximation error can be made arbitrarily small.

The rest of the calculation is identical to the proof of part (a) and we
obtain (5.27). |

6. SCALING LIMIT AT HIGH TEMPERATURE:
THE FRICTIONLESS HEAT EQUATION

We propose a different way to get diffusion from the Hamiltonian
(3.1). As we mentioned, obtaining diffusion for the test-particle means that
we have to extract linear dependence in time for Q(¢). In this section, linear
growth is obtained from time rescaling and from the special form of linear
combinations of sin s and cos s in Lemma 5.2. It relies on a resonance effect
which comes from a singularity near w ~ a. The system X"(z) +a>X(t) (see
(5.1)) picks up those modes from the forcing term f(z) in (4.34) for which
the frequency w is close to its eigenfrequency. So, in this section we assume
Q>1 but finite, contrary to the previous section.

This effect is more robust (see the remark after (5.37)) in the sense that
one could leave the hyperbolic functions fA7 in (5.28) without ensuring a
limit where it goes to 1. In other terms, we do not need the high tempera-
ture limit f — 0 to obtain diffusion, unlike in Section 5.3, where this limit
made the dw measure uniform and we recovered a white noise forcing term.

Nevertheless, Lemma 5.2 needs the right-hand side of (5.3) to go to
zero in order to be applicable (one needs the friction to vanish), and this
cannot be achieved keeping f fixed (Section 3.), hence we again set
A=ABY?, B—0.

6.1. Large Space/Time Convergence of the
Wigner Distribution

Let a be a small parameter. We describe the behaviour of the test-par-
ticle, as given by its Wigner distribution w¥? on time scales of order 1/a*
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We consider the diffusive scaling, i.e., the space coordinate scales as 1/a.
Since the test-particle is a fast harmonic oscillator, and energies are trans-
ferred back and forth between space and velocity, we also have to consider
velocities of order 1/a. Hence we introduce the following scaling,

t=Ta"2, x=Xa"l, v=Va~l (6.1)

where the capital letters are unscaled quantities (macroscopic variables).
The rescaled reduced Wigner transform is defined as,

WeX(X, V) :=w(Ta "2 Xa= !, Va=1) (6.2)

where w¢ is defined in Lemma 4.3 (after the thermodynamic limit). Its
Fourier transform is,

We(0, X) = oW (T2 Ou, Za) (6.3)

1 1

where we use @ =0x~" and X =oca "' rescaled dual variables. The initial

condition is,
War (X, VY=Wo(X, V),  Wa2,(0,2)=Wy0,2) (6.4)
and we assume that
Wy, 2)e LY (Rg x Ry) (6.5)

The macroscopic testfunction @(X, V') is a smooth function with com-
pact support, the microscopic testfunction is defined as,

d(x, v) = D(xa, vo) = P(X, V) (6.6)

and in Fourier variables, §(0, ) = 2®(0x =", ga~") =0 2H(0, 2).
We are now in position to state the theorem of this section,

Theorem 6.1. Define the large time/space scale Wigner distribu-
tion W5 X, V) as in (6.2). Assume (6.5) for the initial data, let 1= 1,82
with a fixed 4,>0 and fix the frequency cutoff 2 > 1. Hence the limits of
the parameters ¢ =(f, Q, A) are reduced to f — 0. Then:

(a) The following high-temperature limit exists in the weak sense for
any T>0:

WX, V)= lim Wa%(X, V) (6.7)

B—0
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(b) Define the following time average of W* over one cycle of the
harmonic oscillator (5.8),

1 T + 27oc
WEHX, V)= j WX, V) dS (6.8)
2702
Then the weak limit,
WEHX,V):=lim WZHX, V) (6.9)
a—>0

exists for each 7> 0 and it satisfies the heat equation in phase space,

N nﬂz
0 Wi = e S(Ay+4,) W (6.10)

with initial condition W} _,(X, V') given by

. 1

2n
WHX, V)= ZnJ Wo(Xsins+ Vecoss, Xcoss— Vsins)ds (6.11)

(c) Define the radial average,
2n
WX, V) f W= (R cos s, R sin s) ds (6.12)

with R:=./X?+V?, and clearly W * depends on R only. Again, the
weak limit,

Wi(X, V) :=1lim WX, V) (6.13)

a—0

exists and the radially symmetric function W satisfies the heat equation
(6.10) with initial condition,

1 2n .
Wi_o(X, V) :=2—J Wo(R cos s, R sin s) ds

T o

Remark 1. The same theorem is true if the frequency distribution
function ¢(w) is not uniform (see (1.4)), but it is only bounded and with
bounded derivative. In particular the sharp cutoff is not necessary. The
right-hand side of the equation (6.10) is multiplied by the resonant spectral
density ¢(1). The proof relies on two modifications of the ¢ =1 proof given
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below. First, the memory kernel M(¢) (see (4.20) and (4.29)) is modified to
22 [§ cos(wt) o(w) dow, and it still satisfies an estimate similar to (4.28)
which leads to Lemma 5.1, hence the memory can be eliminated. Second,
Remark 2 after Lemma 5.2 gives the large time behavior of Q(¢) in the
general case. The details are left to the reader.

Remark 2. Here we identified the equation in a weak sense in the
space and velocity variables, but in a strong sense in the time variable and
some averaging ((6.8) or (6.12)) was needed to ensure the existence of the
limit. If we want to consider the limit in a weak sense in time as well, then
there is no need for averaging. Based upon part (b), one can easily prove
that W7 (X, V) can also be identified as the weak limit in space, velocity
and time, i.e., we have

Corollary 6.1. Under the above conditions the weak limit

WX, V):=1lim lim WX, V)

a—0 -0

exists in the topology of 2'([0, o0)7x Ry x R}, it coincides with (6.9) and
satisfies (6.10).

Proof of Theorem 6.1. Using the rescaling and the definition of w?,
(4.41), we have,

e, @) =| Wix, V) B TV) dX dv

=a? J wé(To =2, x, v) ¢(x, v) dx dv
R2

=2k J Wo(S, 77) 95(6, o) eixE+vm)
RO
X e*i(ﬂX(t)JraX'(t)) dé dn e do df do
~E[ e 0.3)
RS
x @lXE+vm) o —i(OX(1) + ZX'(1)) 4z dy dx dv 6 dS o1

where ¢t = Ta 2.
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First Step: the limit f— 0.

Due to the choice 4 = 4,82, we can replace X(¢) by X(¢) in the §— 0
limit. For, the right-hand side of (5.3) goes to zero as S — 0, hence
Lemma 5.1 applies. Hence,

lim (W5, @) = lim Ej WG ) (0, 2)
R

B—0

x @i+ m o= mOXO+ EXW) g dy dx dv dO dX

= lim E Wo(f@ =(Ta™2), g »(Ta"?))
B—0 R2
x &(0, X) e~ 1227 4o 5 (6.15)
where in the second step we also used Lemma 5.2 and the fact that

00 0r=Co, x and a " g 4x =110, 5 (see (5.8)).

Recall that both Q(f) and the trajectories &g 5, 7 » depend on f,
since a*=1—-2Q=1—22pQ appears in their definition (see (5.8)).
Similarly to the argument at the end of the proof of part (b) of Theorem 5.1,
using that Wye LY(dO dX), de L=~ C° Q >0, we see that the limit can
be taken inside the integral and the trajectories g s, o, » can be replaced
by their limiting values (as a — 1)

ne. s(s):=0sint+agcost o.x(s):=0cost—asint  (6.16)
We also use (see (5.14)) that

lim Q(1)=IA3ty* + A2y*B(1) (6.17)

p—0
with B(t) satisfying By(0) =0 and
[Bo(t)| <C[1+(log?) [ 1 +1og 2] (6.18)

(see (5.15)). We also recall that y*> = 0>+ o> =a*(©2 + 2?) =: «*’I"%. Hence,

lim (W55, @) = | Es (T ) n5, (T ) 86, 2)

xexp{ —3[IAgTa >+ A5 By(To."?)]Joa*(O* + 2°)} dO dX
(6.19)

This relation defines the Fourier transform,

W0, 3) = lim W0, X) (6.20)

B—0
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as a weak limit, and its inverse Fourier transform,

WX, V) = lim W54X, V)

B—0

We can compute its time derivative in Fourier space,
<8TW§~, é) = j o2 { —nZ,E(Toc_Z) O:+ f’g,,z(Toc_z) 0,

2
—% [122+/2B)(Ta~2)] (@2+22)}
X Wo(&h »(Ta=2), % »(Ta=2)) &(6, X)
1
X exp {—2 [L3Ta ™2+ A3 Bo(To )] a*( 02 +22)} de dx
(6.21)

As usual, we can let 7=0 to obtain,

aT|T:0 Wﬂth(@, Z‘)
2

=o~? [ —20o+ @62—% (125 + A3By(0)](O2 +22)} W0, X)
(6.22)
Second Step: the macroscopic limit o — 0.

Now the difficulty in (6.22) is that the convective term is too big com-
pared to the last diffusive term since the motion takes place on two dif-
ferent time scales. There is the fast (microscopic) time scale of the harmonic
oscillator described by a™?[ — 204+ @05 ]. Then there is a slow, macro-
scopic diffusive scale. We present two ways to average out the fast motion.

Part (b) of Theorem 6.1: Averaging over a cycle.

Here we define W# * according to (6.8). Now for any T fixed the
formula,

lim { W#* &> = lim j W#0,x)d(0,2)do ds
ox—0 o«—0
. 1 T+ 2na? . s s
= 1im | [WL Wo(ES, o (Sa=2), %, o(Sa=?))

« o~ hASE 43 ds} (6, %) do dx (623)
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defines a function,

WH(0,2):=lim W0, (6.24)

a—0

weakly, as we show below. Here [, :=1/2 =n/4 for brevity. Note that in
(6.23) we neglected the term involving B, in the exponential (see (6.19))
since the estimate (6.18) readily implies a?B,(7a~2) — 0. The exponential
factor in (6.19) converges to that in (6.23) uniformly for all S< 7. Using
deL', we can apply the dominated convergence theorem along with
approximating W, by bounded functions, similarly to the argument at the
end of the proof of Theorem 5.1.

We have to show that the limit on the right-hand-side of (6.23) exists,

(Wi b
1 T + 2na? . 2 2 2
=j {22 f Wo(fg Z(Soc_z), ;72 E(Scx_z)) E—II,IOT(@ s )dS
R2 | 47T T , )

1 J~T+2mx2 "

2 |, Wo(&s, s(Sa™2), n, =(Sa™?))

Py

x [e~DASO+2%) _ o —hiT(6+27)] dS] $(0,2)d0dxs  (6.25)

The first term in (6.25) is independent of «, as it is just the integral of
Wo(E*(s), n*(s)) over one full cycle of the harmonic oscillator (6.16),

1 T+ 2na? R
o | WlEs s(Sa ) (S dS
1o
:Efo W5 o (s), n%, 5(s)) ds (6.26)

The second term in (6.25) vanishes in the limit a — 0 since,

|e—111%S(@2+22) S —1115T(@2+22)|

<2nl 70202 + X2) e ~HATO +27) (6.27)

(use that |S— T'| < 2na?), which kills the factor « =2 in (6.25) and then the
length of the integration interval goes to zero. Dominated convergence
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theorem again has to be applied after an approximation. This shows that
the limit in (6.24) makes sense and,

(W Dy =(W} &>
_ {1

B R2 2n
x e~hATO+5) §(9, X)) dO dX (6.28)

jo2 CWES, (), 1% 5(5)) ds}

The time derivative is,

1 (20
O W3, @>=—1,75 jRZ(@erzZ) {2” fo Wo(&s, (s), ng,z(s))ds}

x e ~hATO+5) §(@ 5) dO dX
= I W5 (02+2%)d)

— LKW, —(Ay+4,) @) (6.29)

which completes the proof of (6.10). The initial condition (6.11) is easily
obtained from (6.28) by setting 7'=0 and taking inverse Fourier transform.

Part (c) of Theorem 6.1: Radial average

The other possibility to eliminate the fast modes is to use the radial
function W# * defined in (6.12). Now the formula,

lim ( W% &
a—0

=lim | W0, 2)d(6, 2)d6 dx

a—0

. 1 2 _ 3
:hmj|:2n_j0 WO(é;k"coss,I‘sins(T(x 2)3 n?coss,Fsins(Ta 2)) dS

a—0
x e hATO 5D (@ 5) dO d (6.30)
(with I":=./02+ X?) defines a radial function,

Wi(e,x):=lim W0, ) (6.31)

a—0
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(depending only on @2+ X?) as a weak limit, as we show below. Note that
in (6.30) we again neglected the term involving B, in the exponential for
the same reason as in (6.23).

We have to show that the limit on the right-hand-side of (6.30) exists.
But,

é?‘cos s, I' sin s( Ta_Z) = FCOS(S + TO(_2),

”}k“coss,l"sins(T{x72) :FSiH(S+ TO(72)

hence,

1 2n
E J‘0 WO(é?COSS’FSinS( TO(_Z), n;‘“coss,l"sin s( TO(_Z)) ds

1 27 " . R
=—j Wo(I coss, I'sins)ds=: Wi(©,2)
27[ 0

independently of a, which is the “radialized” initial condition in Fourier
space.
So it is clear that the limit on the right-hand-side of (6.30) exists,

lim ¢ W% & =f Wi, X) e~ haTO+ ) §(@, X)) dO ds =: ( Wi, >

a—0

and clearly W1, also satisfies the heat equation (6.1). This ends the proof
of Theorem 6.1. |

7. HEAT EQUATION WITH FRICTION AT FINITE
TEMPERATURE

Here we choose a scaling where the Markovian part of the friction
term does not vanish, i.e., we can keep f fixed and still get finite diffusion.
Again we look at large time 1= 76! but now we do not scale the space
variable. To eliminate the fast mode, we again integrate the angle. The
result is a radial Fokker—Planck equation with friction. While the test-
particle performs many cycles, it slowly diffuses out, and this diffusion is
slowed down by a friction. The diffusion comes from resonance.

In this scaling limit the solution of (4.36) is close to the solution X(¢)
of an equation without a time delayed (non-Markovian) friction term, but
a Markovian friction term will be present. Let us choose,

=012 (7.1)
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with some 4, <1 fixed. We compare the solution of (4.36) to that of

X+ DX () +a?X() = f(1);  XO0)=x, X'(0)=v (72)

with a?:=1-4’Q=1-156""Q, and,

© gin Qs T
1=j ds=3 (7.3)

0 N

We choose the scaling such that ae(0, 1], hence we always assume that
Q<571 but to exploit resonance, we also assume £ >2. The new term
J2IX'(t) for the approximate characteristic is due to the fact that
M(t) ~ 2%I54(t) as Q — 0, where J, denotes the Dirac delta measure. This
term is the main part of the full friction (M * X’) in (4.36). Notice that it
is small compared with the pure harmonic oscillator terms, X" + a>X, but
it is not negligible, since we will consider long times ¢ ~ 472

7.1. A Priori Bounds and Continuity Results

As in Section 5.1 we need a priori estimates for X, i.e., for,

F(t):=supE | X(s)| +sup E | X'(s)]

s<t s<t

and estimates on the difference between X(#) and X(¢). The estimate (4.37)
in Lemma 4.2 (which originates in (4.24) in Lemma 4.1), however, is not
precise enough for large times. The following estimate is a more precise
version of Lemma 4.2.

Lemma 7.1. Let t=T5"", 1= 1,0"? with fixed 1,<0 and T >0
and we assume that 2<|logd|’<Q<J~! We also fix f>0, hence the
limit of scaling parameters ¢ =(f, 2, 1) is reduced to J -» 0, Q2 —» co with
the side condition that Q e[ |log |7, 6 ~'].

Let X be the solution to (4.36), then,

F(To™Y) < C(B, 2o, T)(1 + |x| + [v]) (74)

where C is monotone increasing in 7. Moreover, if X is the solution to
(7.2), then the difference Y(¢)=: X(¢) — X(¢) satisfies,

lim ( sup E|Y(s)|+ sup E|Y'(s)))=0 (7.5)

6-0 s<T15-1 s<Ts!
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In particular,

lim J W (s, x, v) P(x, v) dx dv = lim J we (s, x, v) d(x, v) dx dv (7.6)
R2 R2

-0 -0

uniformly for all s< 75!, where Ww%(s, x,v) is the Wigner transform
corresponding to X, defined exactly as (5.4), but X(¢) now being the solution
to (7.2).

Proof. We follow essentially the proof of Lemma 4.1. The charac-
teristics (4.36) fulfill

X(t) = x cos at + va~" sin at
+jta—1 sin a(t — $)[ f(s) — (M % X')(s) — xM(s)] ds
0 (7.7)

X'(t)= — xa sin at + v cos at

t
+f cosa(t—s)[ f(s)— (M * X')(s)—xM(s)] ds
0
Similarly to the proof of (4.30) one obtains

E

fta’l sina(t—s)[(M * X')(s)+xM(s)] ds

<KU(:F(S) ds+|x|}
(7.8)

recalling the value of K (4.25), and the cosine term in X’(z) is similar.

Now we estimate the random forcing term. First we use

2\ 12
< <E > (7.9)

then notice that a~'sin a(z —s) =17 ,(t—s) with =1, 6=0 (see (5.8)).
Hence (cf. (5.12))

E

jtf(s)a—lsina(z—s) ds

ftf(s)a—l sin a(t — s) ds

2

Q
E <z2f Aw) H(t, 0, 1,0;a)  (7.10)
0

rf(s) a~lsin a(t—s)ds
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which is just Q(¢) = Q(#; 1, 0; S, a), see (5.11). Hence from (5.14), (5.15) we
get

2

E <C3B, 2o, T) (7.11)

jtf(s) a~lsina(t—s)ds
0

using the relations among the parameters; t=70"", i=1,6"* and
Q< 7. Similar estimate is valid for the cosine term.
The estimates (7.8), (7.9) and (7.11) lead to the a priori bound,

F(1) < |x| + o] + K UtF(s) ds + |x|} +C\(B oy T) (7.12)
0

and by the standard Gronwall argument we obtain,

F(t) < Cy(B, Ao, T)(1 4 |x]| + |v]) (7.13)
By monotonicity of C, in T, we get the a priori bound (7.4) on X{(¢) and
X(I)From the equation (4.36) we also get a similar bound for X"(¢). We

estimate

E |X"(1)| <a®E | X(1)| + (E [f()])* + |x] |M(2)]
+f|M(s)| E|X'(t—s)| ds
0

For the forcing term we use

5 [? o(cosh fw+1)

E|[f(1)*=1 > sinh fo dow < C4(B) 12Q2
(see (4.32)) and that
sin Qs|  2QA?
|M(s)| =22 <Tto (7.14)

These estimates, along with = T3, 1=1,6"% and Q <J~!, give that

sup E |X"(5)| < Ca( B, o, T)(Ix| + [0 +2'7) (7.15)

s<To~!

using the a priori bounds (4.37), and C, is monotone in 7.
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For the continuity result, notice that Y(z):= X(¢) — X(¢) satisfies the
equation,

Y'(£)+ DY (1) +a*Y(t) = 122X (1) — (M % X')(t) — xM(t) (7.16)
with initial conditions Y(0)= Y’(0)=0. Using (7.3) we obtain,

[I22X'(s) — (M % X")(s)|

JOO sin Qu

<2 [ P () = X' (s —u)) du

Q
[ s + 22 X'(s)]
0

du

u s u

(7.17)

The second term is estimated by (const) 22 | X'(s)| with a universal constant
if s<1 and by (const) A4(Q2s) ™' | X'(s)| < (const) 12Q7 1| X'(s)] if s> 1.

In the first term we split the integration domain. For u > Q%3 we use
integration by parts, (4.37) and (7.15)

L 4 <°°S Q”) u=N(X'(5) — X'(s—u)) du

J’E
-2 du Q

< Cs(B, 2o, T) 0 [log 6] Q713(1 + [x]| + [v])

for all s<Té~ 1. For the domain 0 <u <Q %3, we use Taylor expansion:
| X'(s)— X'(s —u)| < |u| sup, <, |X"(o)| and the bound (7.15). We obtain
finally, using (4.37),

E [12X'(s)— (M % X')(s)| < Cy(B, 49, T, x,v) 6 |log 6| @~V (7.18)
if1<s<Té ! and

E |I22X'(s) — (M % X')(s)]
<mA30F(1) < CH(B, 29> X, v) (1 + [log 5| 271/%) (7.19)
ifs<1.
We now introduce the two fundamental solutions ¢ and  of Y” +

D2Y +a*Y=0 with ¢(0)=0, ¢'(0)=1 and y(0)=1, ¥'(0)=0. They are
explicitly given as,

L2
p(1)=b"le P sinbt,  Y(t)=e " cos bt + - o) (7.20)
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with b := (a* —I*/*/4)'2. Note that they are bounded functions for small
enough J. Hence, by (7.14), (7.18) and (7.19),

E |Y(t)|=E Ut(/)(t—s)(lxlz)(’(s)—(M* X')(s)—xM(s)) ds

< (C8(ﬁa /109 T’ X, U) |10g 5| 9_1/6 + C7(ﬁ9 ;"05 X, U) 5
+222 |x| [1+ (log Q1) . 1) ¢l
< Co(B, 2o, T, x, v) QY6 |log 6] (7.21)

The constants Cg and Cy can be chosen monotone in 7, so the same
estimate is valid for sup, . ,5-1 E |Y(s)|. The argument for Y’ is similar,
which proves (7.5). |

7.2. Transport Equation Before Scaling Limits

Armed with (7.6), it is enough to compute W% (¢, x, v). The calculation
is the same as in Section 5.2 except for the different fundamental solutions
@ and y given in (7.20). We redefine,

o, o :=00(1) + 09’ (1),
Co.0 =00(1) +ay'(2)

(7.22)
and in complete analogy to Lemma 5.2 we state the,
Lemma 7.2. We have for 1 >0,

f , Wwe(t, x, v) ¢(x, v) dx dv

R

= [ Woléa o) 10,,(1) B0, 0) =P dpdg (723)
R2
with
O(1) 1= 22 fg A3w) H(1, ») do (7.24)
0

and H is given again as H(t, w)= |§6 N9, ,(s) e~ ds|? but with the new
1o, » defined in (7.22). We also have exactly the same estimate as (5.16), but
with the redefined quantities. ||
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7.3. Obtaining Diffusion from Scaling Limit

In this section, and with similar arguments as in Section 6, we again
obtain linear dependence in time of Q(¢) for large . Indeed, we first write,

1 _ 13?
(e =), with ui= i (7.25)
l

»(1) 5

With these notations, we have,

1

1o, g(l)=ﬁ(H(e’”—e’ﬁ)+a(ue‘”—ﬁem)) (7.26)
i
hence,
1 t(u—ia))_l t(:i—iw)_l 2
H(t, ) =~ | (0 + 1) ———— — (0 + o) —— (7.27)
4b u—iw u—iw

We now take the scaling 1= 76 ! for a fixed T and J — 0. The terms
with denominator i — i = —I4*/2 — i(\/a* — I*/*/4 + ) have no singularity
(they are bounded) so the first term of H is the main term. Extracting the
main term, we can write (cf. (5.20)),

et(u—i(u) _ 1 2

H(t, w)=(0*+a%c?) [412
a

- + U(l,w)}
u—iw

Using u=ai+ 0(3), 0 <a*< 1, b*> =a*+ O(5?) we obtain for small enough
o0 that,

[ 1U(T6, )] doo < Coola, B. 2o, T) llog 8
0

With some elementary calculations this implies,

76~ Yu—iw) _ 112

1 Q
Q(T5_1)=22(92+a202){zj Aw) | : dw-i—Bl(Té‘l)}
da* Jo u—iw
Az(a) a—/3 eT&*I(u—iw)i 2
_12(p2 2.2 B —1
—72(0 +aa)[ s Lﬁ — do + By(TO )}

(7.28)

where the functions B; (j =1, 2) satisfy |B;(T0~")| < Cyy(a, B, 49, T) 62
We used that the function w+— Alz,,(w) is bounded with a bounded
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derivative around w ~ a, and that the function z > (e”” —1)/z is uniformly
bounded by ¢ in the vicinity of the imaginary axis.

Since the derivative of z+ |(e” —1)/z|? is bounded by 72, one can
replace u by ai in the last integral at the expense of an error
2 \/3 |u— ia| t* = O(6~?). Finally one can evaluate,

2

dow=2rTo~ "+ O(6~'?)

a— /5 |pTo a—w)i _
'[a+\/5

At this step 7 >0 is used. In summary, we obtained,

a—aw

)5 . (cosh(fa)+1)

Q(T5_1)=(02+a202)<A0T Ja sinh fa +B3(T5‘1)> (7.29)

The error satisfies |B;(T6 ') < Co( B, 4o, T) 5'72, hence,

lim Q(To~ ") =cyidy°T (7.30)
-0
with y := 0%+ ¢%¢* and
n(cosh(fd)+1)
=—— 7.31
6= 4gsinh fa (7.31)
assuming that
d:= lim a= lim (1—-21,257") (7.32)
0—-0,Q2— oo 60,2

exists, and de (0, 1].

Since we will keep f fixed and choose A = 4,6"* with a fixed 4,, d and
Q are left as a scaling parameters from the triple ¢=(f, 22, 1). Like in
Section 6 (cf. (6.2)) we introduce,

We(x,v) :=we(To~ ", x, v) (7.33)

and notice that only the time is rescaled. We will assume that 2 — oo along
with § — 0 in such a way that the limit (7.32) exists and Q € [|log 5|7, 6 ~'].
Clearly either @ ~ 6!, in which case d < 1, or Q <6}, when ¢ = 1. In the
latter case, however, we need Q > |log §|.

7.4. Derivation of the Limiting Equation

We need the notion of “radial” function with respect to the elliptical
phase space trajectories of the oscillator Y” +4?Y. As usual, the dual
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variables to the phase space coordinates (x, v) are (6, o). With d > 0 fixed,
let

y=9(0, o) :=/0*+ d*c*, r=r(x,v):=/x>+d %

which will be considered either variables or functions, depending on the
context. If a function u(x, v) depends only on x2+d 22 then it can be
written as u(x, v) =u*(r) with some function u* defined on R_. Then the
two dimensional Fourier transform (6, o) = j exp[ —i(0x + ov)] u(x, v) dx dv
is a function of 6%+ @c? only, hence it can be written as @(0, o) = ii*(y).
Here @i* can be thought of as the “elliptical-radial” Fourier transform of u*,
but in order to avoid confusion, we will always perform Fourier transforms
on R? ie., between u(x, v) <> (0, o), even if these functions are radial.

For any function u(x, v) we can form the radial average of its Fourier
transform #i(0, o) by defining

1

" 2n

1 I
< =5 Lz_,_‘;z&z,yz (D, 6) di do-)

2n
0*(0,0): f ii(y cos s, d "y sin s) ds
0

which is a function of y, hence it can be written as
a* (0, o) =a” *(y)

In this notation # refers to radial averaging, and * indicates that we
consider the radial part of the function. Tilde indicates that it comes from
the two dimensional Fourier transform # of the original function u.

Theorem 7.1. Define the large time scale Wigner function W¥.(x, v)
asin (7.33). Assume that A = 1,62 A, <1 and fix #>0, d e (0, 1]. The initial
condition Wi(x, v) =wq(x, v) satisfies Wo(0, ) € L'(R,x R,). Consider the
radial average of W%,

1 2rn R
W) =5, | Wity coss.a™ysins) ds (734)

Then for any T >0 the limit,

WF0.0) = lim  WEA0.0) (7.35)
|—205—a
Q= |log |’
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exists in a weak sense and it is a function of y = (6> + ¢%¢*)"/? only. Hence,

its inverse Fourier transform W} (x, v) is a function of r= (x?+ ¢~ 2v?)"?
only and it can be written as W} *(r) := W} (x, v). This function satisfies
the radial Fokker—Planck equation,

A2 Cpll
ﬁOA

O Wi *==2 0, W i)+ 20 4, Wit * (7.36)

(cg is given in (7.31)) with initial condition W *(r) := W7 _(x, v) whose
Fourier transform Wy (0, o) is given by,

R 1 2n
W0, a):=wg(0, a)=2—J Wo(y cos s, d~ 'y sin 5) ds (7.37)
T Jo

Remark 1. The weak limit lim**J#%.,(0, o) (without averaging over
the angular variables) does not exist (here lim** stands for the same limit
as in (7.35)). However, time averaging can again replace angular averaging
(see Remark and Corollary 6.1), ie., our method easily proves that
lim**W%(x, v) exists in a weak sense in all variables (x, v, T), i.e., in the
topology of Z2'(R, xR, x [0, o0)), and it satisfies (7.36) weakly in space,
velocity and time.

Remark 2. Since the diffusion coefficient 3435¢, in (7.36) behaves as
B! for small B (high temperature), we see that Einstein’s relation is
satisfied at high temperatures. At small temperatures the diffusion does
not disappear (lims_, ., ¢s>0), which is due to the ground state quantum
fluctuations of the heat bath.

Remark 3. Similarly to Remark 1 after Theorem 6.1, one can investi-
gate how this theorem is modified if ¢ is not uniform (in particular if the
cutoff is not sharp). The diffusive mechanism is not affected by this general-
ization, thanks to Remark 2 after Lemma 5.2, the only change is an extra
o(d) factor in the second term on the right hand side of (7.36). But the
modified memory kernel, M(s) = A> jg cos(ws) o(w) dw, does not converge
to the delta function d,(¢) as 2 — oo, hence the nonuniform frequency dis-
tribution makes the memory term nonlocal in time. The details are left to
the reader.

Proof. The proof is similar to the proof of Theorem 6.1, hence we
skip certain steps. Let ¢(x, v) e Cy(R x R). Similarly to (6.14) we obtain
from (4.41),
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(W =j W (T, 0, 0) §(0, o) dO do

—E f Wo(E, 1) B0, 7) 0 +om g =HOXW +oX' W) 4 gn dx dv df) do
(7.38)

Thanks to (7.6), in the limit § — 0 we can replace X by X and to take the
limiting value (7.30) of Q in the formulae (we again have to approximate
W, by bounded functions first). We obtain (cf. (6.15)),

lim* W5, ¢ = Hm**E [ (&, 1) 410, ) 50
x ¢ ~HOXTO™D +eX(T5™D) g# hn dx dv dO) do

—tim** [ Wo(p, (T8 1), 70, T671))

X $(0, a)e VP AT 4o g (7.39)

where lim** stands for the limit in (7.35). Recall that the functions &, , and
o, now depend on the limiting parameters, since ¢ and  do, and they
are oscillating, which again prevents the existence of the weak limit in the
last line of (7.39) without averaging.

Time averaging is analogous to part (b) of Theorem 6.1, and it gives
the weak limit in space, velocity and time. We skip the details of the proof
of the statement of Remark 1.

Performing a radial avegaring (with respect to the limiting ellipses
given by the level curves of r=r(x, v) or y=v(6, n)) is the same as using
radial testfunctions ¢ which depend only on r; ie., ¢(0, o) depends only on
» hence it can be written as ¢(6, o) = ¢*(y). In this case

(W by =W, §>

From the explicit formulas (7.20), (7.22) it is straightforward to check
that

im** sup [([<g,,(5)1%+d%[71,,(5)]1%)

s<To~1
— e[y o(5)12 + @10, o(5)]%)] =0 (7.40)

where & and 7j are the solutions to Y" +4°Y =0, ie.,

Ep, o(8) := 0 cos(ds) — ad sin(ds), 1o, o(8) :=0d " sin(ds) + o cos(ds)
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Since the flow (8, ) — (&4, ,(5), 74, ,(5)) is measure preserving, one can
change variables

[ W0lE0,0(0),710,o(0)) F(0, 7) =220 4 dy
R2

= [ o0, 0) F(EF (0,18 () e 1P SO dgdo (741
R2 ’ ’

where *(t) :=n(—1), £*(t) :=&(—1t) are the backward trajectories. In this
way we pushed the trajectories into the argument of ¢, where only their
&2+ ¢*yp? combination matters, and we can apply (7.40) to replace ¢, 7
by &, 7, finally we can change variables backwards, now along these new
trajectories.

Hence together with (7.30) and with ¢} := c4/2 for simplicity, we have

Hm**( W22, §> =lm**{ W=, §>

=tim** [ pg(e AT, (To™1), e T2, (T57Y)
: :

R

X §*(7) e~ SR’ 40 d

S

if we can show that this latter limit exists. But the right hand side above
is in fact independent of the limiting parameters J, 2, since we can first
integrate on ellipses 07 + d%* = (const), similarly to the same calculation in
the proof of part (c), Theorem 6.1. Hence,

fm Wole~RTRE, (To1), e =R, (T5~1)) §*(y) e~ 447 dO do

_ W+ *( *UOT/Z) 5 () 7%’}‘%7'7}2 do do (7.42)
R2

where we recall the definition of W (7.37), which depends only on y*=
02 + d%0?, and we let W *(y) := W (0, o). Therefore, the relation,

i s W ge, = [ W *(re72) F¥(y) e~ HR17" do do
R

defines the weak limit,

W0, 6) :=lim** W %50, &)
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and it is a function depending only on 0*+ @%c? ie., it can be written as
Wi *(y) := W5(0, o). Also, we readily obtain the equation satisfied by
W x> *(y) by computing,

Orlr—oW5. 8> =0rlrq | Wi *(7e™"7) () =547 db do

12 . _
- Rz[ - Vay—%)%yz} W *(y) §*(y) do do (7.43)

from which (7.36) follows, recalling that /= /2 and the value of cj=cz/2
from (7.31). |
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